Approximation theorems for spaces $n \in \{0, 1, \ldots \}$

1. For every space X, there exists an $\leq n$-dimensional CW complex X'_n and an n-equivalence $f_n : X'_n \to X$.

Definition: Let X, Y be CW complexes. A CW-map $f : X \to Y$ is a (continuous) map
such that \(f(X_m) = Y_m \). Then

(Note: For example, the cell \((2) \) is functorial in \(CW \)-maps).

(2) Every continuous map of \(CW \)-complexes (or pairs) is homotopic to a \(CW \)-map.

Sketch proof of (2): Let

\[f : X \to Y \]

be a continuous map, \(f|X_{m-1} \) be \(CW \).

The strategy is to homotopy \(f|_1 \), rel \(X_{m-1} \), to a
may induce f' which is CW when restricted to X_n.

Because inclusion of a skeleton is a cofibration, it suffices to construct f' on X_n. (After that, just (and the homotopy)

extend the homotopy.)

X_n is obtained from X_{n-1} by attaching n-cells.

WHO G, there is only one n-cell (we can treat every n-cell separately by the colimit properties).

WHO G, $X_{n-1} = S^{n-1}$

$X_n = D^n.$

\[S^{n-1} \rightarrow V_{n-1} \text{ CW complex} \]
Let S^{m-1}

$S^{m-1} \rightarrow \gamma_{m-1} \subseteq \Delta^{m-1}$

Now that $f \preceq f'$ rel S^{m-1}

where $f'(0^m) \subseteq \gamma_m$.

\[\Box \]

Proof:

\[\text{Assume this is an } (m-1) \text{-equivalence} \]

\[X_{m-1} \rightarrow X \]

\[? \quad \Delta^{m-1} \quad ? \]

\[X_m \quad ? \quad m \text{-equivalence} \]

(at least one)
What if $n = 0$? Choose a point in each path component of X.

What if $n = 1$? If you chose more than one point in each path component, attach a 1-cell to connect them, (i.e. Ξ on π_0). To be onto on π_1, attach a bouquet of (S^1)'s generating on each path component π_1 of each path component of X.

What if $n \geq 2$? We may assume X is path-connected.
Attach \(n \)-cells to kill any relations in \(\pi_{m-1} X \).

(more precisely speaking, \(\ker (\pi_m X \to \pi_{m-1} X) \)).

and a bouquet of \(n \)-cycles to be onto on \(\pi_m \).

does this really make \(\prod_k X'_m \to \prod_k X \)

are on \(k \leq m-1 \)?

But for \(k < m-1 \), \(\prod_k X'_m \to \prod_k X_m \)

is \(\cong \) by (2).

Similarly for \(k = m-1 \) to prove \(\prod_k X'_m \to \prod_k X'_m \)

is onto. For simplicity, we use the diagram.
The Whitehead Theorem: If X is a CW-complex and $\epsilon: Y \to Z$ an n-equivalence ($n \in \mathbb{N}$ or ∞), then

$$[X, \epsilon]: [X, Y] \to [X, Z]$$
is a bijection when \(\dim X < m \) and onto
when \(\dim X \leq m < \infty \), and a bijection
for all CW complexes \(X \) when \(n = \infty \).

\[
T \Theta U^m \cong M
\]

\[
\text{dim } \Pi = M
\]

\[
M^m \wedge M^m = (M \times M)^{T \times 0^n}
\]

\[
\text{"diagonal"}
\]

\[
\Sigma^m M^\infty
\]

\[
? = \Sigma^m M^\infty \wedge \Pi^n
\]