The simplicial realization of a simplicial presheaf

\[\Delta = \{ (x_0, \ldots, x_n) \in \mathbb{A}_{\mathbb{R}}^{n+1} \mid \sum x_i = 1 \} \]

\[(= \text{Spec } \mathbb{R}[x_0, \ldots, x_n] / (x_0 + \ldots + x_n - 1)) \]

If \(X \) is a simplicial (pre) sheaf, more generally, object of another category,

\[|X| = \Delta \times_{\Delta^0} X \]

\[\mathcal{C}(\ast, \Delta_m \times X_n) \Rightarrow \prod_{m \geq n} \Delta_m \times X_n \]
Theorem: \(\{X\} \sim X \).

The \(\mathcal{A} \)-sided bar construction of categories.

\[\beta(\{X, C, Y\} \rightarrow X \times C^Y) \]

\[\uparrow \]

Simplified: with stages: \(a_0 \rightarrow f_1 \rightarrow f_2 \rightarrow \ldots \rightarrow f_n \rightarrow a_m \)

on the left:

contravariant \(-\).

on the right:

functions \(Y: C \rightarrow D \)

Exercise: check \(\square \)
This means pullback

\(\forall \times \text{Obj} C \to \text{Obj} D \to \text{Obj} E \to \text{Obj} F \to \text{Obj} G \)

(sorry)

faces: functoriality \(\times \text{fun} \)

degeneracies: Insert Id.

composition \(\text{fun} \)

key point: face maps are cofibrations

\(\Delta \times \Delta^0 \to X \)

\(\Rightarrow \nabla \leftarrow \beta (\Delta, \Delta^0, X) \to \beta (\Delta^0, \Delta^0, X) \leftarrow \beta (\Delta, \Delta^0, X) \)

\[\delta m = \delta^0 (m, m) \]

reprentable:

\[\beta (+, \Delta^0, X) \leftarrow \beta (\Delta^0, \Delta^0, X) \]

\(\nabla \leftarrow \beta (\Delta, \Delta^0, X) \)
\(\mathbb{D}(0, \sigma_0, 0, \sigma_k) \Rightarrow X \)

Differential

\[\Delta + \sigma_0 X = X \]

Twist in algebraic geometry

Voevodsky: \(\mathbb{P}^1 \sim S^1 \times \mathbb{C}^\times \)

\(S^1 \sim \mathbb{A}^1 / 0 \sim \)

Exercise.

\(C_m = S^{1,1} \sim S^2 \)

\(\mathbb{P}^m / \mathbb{P}^{m-1} \sim \bigwedge \mathbb{P}^1 \sim \bigwedge S^{1,0} \times \bigwedge S^{1,1} \)

"Twisted line"
Example of twist: Basic Hodge theory, geometry.

Let X be a complex manifold. ("locally, smooth")

We will assume X is compact, in good cases Kähler:

The de Rham complex on a complex manifold M:

$$ TM \xleftarrow{\text{tangent bundle of } M} TM^* \xrightarrow{\text{Hom} \left(TM_x, \mathbb{R} \right)} $$

We will complexify again: $ TM_x^* \otimes_{\mathbb{R}} \mathbb{C} \xrightarrow{\text{Hom} \left(TM_x, \mathbb{C} \right)} $
If \(z_1, \ldots, z_m : U \rightarrow \mathbb{C} \) are holomorphic coordinates: \(z_j = x_j + i y_j \).

A basis of \(T_{\mathbb{C}} U \otimes \mathbb{C} \):

\[
\frac{\partial}{\partial x_j}, \frac{\partial}{\partial y_j} \quad \text{and} \quad \frac{\partial}{\partial z_j}, \frac{\partial}{\partial \overline{z}_j}
\]

\[
\frac{\partial}{\partial z_j} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} - i \frac{\partial}{\partial y_j} \right) \quad \frac{\partial}{\partial \overline{z}_j} = 0
\]

\[
\frac{\partial}{\partial \overline{z}_j} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j} \right).
\]
$d_{\bar{z}_j}, d_{\bar{z}_j}$ are the dual basis of $\frac{\partial}{\partial z_j}, \frac{\partial}{\partial \bar{z}_j}$.

Now the de Rham complex of Ω is double-graded:

$$L^{k, \ell}(\Omega) = \{ \sum_{i_1 + \cdots + i_p = \ell} \sum_{j_1 + \cdots + j_p = k} a_{i_1 \cdots i_p j_1 \cdots j_p} \text{d}z_{i_1} \wedge \cdots \wedge \text{d}z_{i_p} \wedge \text{d}\bar{z}_{j_1} \wedge \cdots \wedge \text{d}\bar{z}_{j_p} \}$$

$C^\infty \text{ smooth function } \Omega \to \mathbb{C}$

Similarly, $L^{k, \ell}(M)$ (in local coordinates).

$\gamma : L^k(M) \to L^{k+1}(M)$
In local coordinates,

\[\partial \quad \partial \quad d z_j \quad \cdots \quad \land d \bar{z}_k. \]

\[= \sum \frac{\partial h}{\partial \bar{z}_k} \quad d\bar{z}_k \land d z_j \land \cdots \land d \bar{z}_k. \]

\[\partial h (z_j, \cdots, d \bar{z}_k) = \]

\[= \sum \frac{\partial h}{\partial \bar{z}_k} \quad d\bar{z}_k \land d z_j \land \cdots \land d \bar{z}_k. \]

De Rham cohomology (with coefficients in \(C \)) is the cohomology of the total complex.
There is an operator of complex conjugation of differential forms:
\[dz = d \bar{z} \]
\[\bar{z} \text{ in coordinate } \bar{z} \text{ (ordinary complex conjugation)} \]
\[(\text{we check rule to show this is preserved by holomorphic change of coordinates}) \]
\[(\text{smooth version}) \]
A Hermitian metric is an Hermitian metric on a C*-module (complex inner product)
Example: smooth projective variety \mathbb{C}^n. The manifold \mathbb{C}^n is called a \textbf{K"{a}hler} manifold if $\omega = 0$.

$\omega = \frac{1}{2} (\overline{\alpha - \beta}) e_\omega$

$L_{\alpha} : \text{real flat "gradient"}$

$\alpha^* = e_{\alpha} \in \mathbb{R}^n$
Fubini–Study metric

\[w = i \partial \overline{\partial} \ln \| z \|^2 \]

and the homogeneous coordinates.

If \(M \) is a smooth projective variety over \(\mathbb{C} \), this induces a Kähler metric on \(M \).

\[\Omega (M) \]

\[\tau \]

\[\xi \]

\[\eta \]

\[\theta \]

\[\xi' \]

\[\eta' \]

\[\theta' \]
$F^p \mathcal{L}(\mathcal{M}) = \bigoplus L^{r-2} \mathcal{M} \quad \text{for} \quad p' \geq p$

(de Rham)

Theorem: For compact Kähler manifolds \mathcal{M}, this E' collapses to E'. \mathcal{D}

F - cohomology is the cohomology!