\[\text{Openad} \quad (\mathcal{E}(n))_{n \in \mathbb{N}_0} \]

(in spaces)

\[\text{Space} \]

(1) \(\sum_{n} a_n \in \mathcal{E}(n) \)

(2) \(a \in \mathcal{E}(1) \)

(3) \(\psi : \mathcal{E}(n) \times \mathcal{E}(k_1) \times \cdots \times \mathcal{E}(k_m) \rightarrow \mathcal{E}(k_1 + \cdots + k_m) \)

Think: \(\mathcal{E}(n) = n \)-ary operations in \(n \) distinct variables.

Based: \(* \in \mathcal{E}(0) \).
The group G acts on a space X: $G^m \times X \times \cdots \times X \rightarrow X$.

Actions:

- Action: $\cdot : \ast \in G \rightarrow \ast \ast X$.
- (X bound)

A monad in a category T: $C: T \rightarrow T$.

- $\mu : C \Rightarrow C$ associativity,
- $\eta : 1 \Rightarrow C$ unit law.

C-algebra X: $\Theta : CX \rightarrow X$ associativity, unit law.

A monad associated with a group G:

Unbundled: \[CX = \bigoplus_{m \geq 0} \Sigma_m \cdot X^m \]

Based: \[CX = \bigoplus_{m \geq 0} \Sigma_m \cdot X^m / \sim \]

\[\delta_i : \Sigma_m \to \Sigma_{m-1} \quad (\text{plug in last point}) \]

\[\delta_i : X^{n-1} \to X^n \]

Observation: A \(C \)-algebra is the same thing as a \(G \)-algebra.
The principle of loop space theory

\[\xi_k : G_k(\tau) = \]

little k-cube operad

The associated monad \(C_k \) has a monad of monads

\[C_k \rightarrow S^k C_k \]

(base)

\[\rightarrow k\text{-fold suspension} \]

\[\rightarrow k\text{-fold loop} \]
\[C_k X = \{ x \in X \} \quad \text{and} \quad k \geq 2 \]

\[(LNM 271 - May)\]

Approximation theorem: If \(X \) is connected (\(W \)-complex):

\[C_k X \rightarrow \Omega S^k E^k X \quad (1) \]

is a weak equivalence. Otherwise, (1) is a group completion.

\[H_\ast \Delta^k E^k X = H_\ast C_k X \mathbb[Z \pi_0 C_k X] \]

\[\square \]
Recognition principle - how to recognize a k-fold loop

Suppose \(X \) is a \(C_k \)-space. \(\mathcal{E} \rightarrow \mathcal{E} \)

\[B(\mathcal{E}^k, C_k, X) \]

\[\mathcal{E}^k \leftarrow \mathcal{E}^k \text{- function} \]

\[(\mathcal{E}^k \circ \mathcal{E}^k \rightarrow \mathcal{E}^k) \]

\[E \text{ right } C \text{- functor} \]

\[D \text{ left } C \text{- functor} \]

\[C \circ D \rightarrow D \]

\[B(E, C, D) \]

\[\wedge \text{ - welded} \]

\[m \text{- the stage} \]

\[E \circ D \]

\[\text{face - composition} \]

\[\text{degenerate, unit} \]

LNM 271

May: A n equivalence. Quasi-fibrations (Dold, Thom: Quasi-
\[B(C_k, C_k) \xrightarrow{\sim} S^k B(C_k, C_k) \]

\[\text{an equivalence if } X \text{ connected, group completion otherwise} \]

\[\{X, \partial X\} \xrightarrow{\sim} \text{ (hierarchical level-wise)} \]

Passing to \(k \to \infty \), \(E_\infty \) - space is (in group completion)

\[\text{an infinite loop space, } E_\infty \]

\[U \mathbb{C}_k \xrightarrow{\sim} \mathbb{Z}_m \xrightarrow{\partial} \mathbb{Z}_{m+1}, \ m = 0, 1, 2, \ldots \]

Homotopy class \(\sim [X, \mathbb{Z}_m] = E^\infty X \)
Any G_0 -space algebra

is a group - complete

map of G_0 - spaces $B(P, X)$ is an equivalent G - algebra.

$(\text{free } G_0 \text{-action})$

$G_0 \text{-operad}: \phi_0^i (x) \in k$
A permutative category is a category \mathcal{C} with an operation \otimes which is strictly associative and unital, and I have a natural transformation $\sigma : X \otimes 1 \to 1 \otimes X$

1. $\sigma^2 = \text{Id}$
2. $X \otimes Y \otimes Z \xrightarrow{\sigma} Y \otimes X \otimes Z$

$(\eta \otimes 1)(\otimes X) = Y \otimes Z \otimes X$
Perhaps a more familiar notion: Symmetric monoidal category

\[(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z)\]

\[0 \otimes X \cong X \cong X \otimes 0\]

Coherence diagrams commute.

(take a word in a free commutative monoid, process using axioms --- --- with the original word)

Street- Joyal construction: For every symmetric monoidal category there is a canonical equivalent permutative category.
From a permutative category (hence, a symmetric monoidal category),

we can manufacture an ∞-space (hence an ω-loop space, hence a generalized cohomology theory).

The nerve (classifying space of a category):

$\mathcal{N}(J) \subset \text{ n-th stage: } \prod_j J \times \mathcal{O}_J \times \prod_j J \times \cdots \times \mathcal{O}_J \times \prod_j J$

ω-tuples of composable morphisms,

(0-tuple = object)
If T is a permutative category, why is BT an E_{∞}-space? I produce a simplicial operad: tech resolution of the associative operad $\mathcal{C}(S)$.

\[S \leftarrow S(m) = \Sigma m \]

An S-algebra is the same thing as a monoid.
\[\tilde{C}(S)(n) = \underbrace{S \times \cdots \times S}_{(k+1) \text{ times}} \]

\[\text{simplex level} \quad \uparrow \]

\[\text{faces = projections} \]

\[(\text{If } G \text{ is a group, } \tilde{C}(G) \cong B(G, G^+)) \]

\[\text{degeneracies = diagonal elements} \]

\[\tilde{C}(S) \text{ is a simplicial operad acting on } D(T) \]

\[\text{simplicially (one stage at a time)} \]
After simplification, mix them up. Use Θ.
Theorem: If \(J \) is a commutative category, then \(BT \) is naturally a \(\mathcal{D} \)-space if hence an \(E_\infty \)-space.

\[E_\infty \text{-operad} \]

Examples:

1. \(J = \text{finite set} \), \(\sim \), \(H \)

2. \(S = S^0 \), the sphere spectrum

3. f.d. \(C \)-vector space, \(\sim \), \(\mathcal{D} \)
Type spectral category $k \in$ connective topology

R-

Projective f.g. R-modules R ring

Locally free algebra bundles X scheme

$\cong 1 \circ$

\rightarrow

$K_{alg} R$

$K_{alg} X$.