From last time:

\[K(T^f) \xrightarrow{\sim} K(A) \rightarrow K(f^*A) \xleftarrow{\text{filtration of loop space}} \]

denotation \(K((A/f^{1})) \)

category of morphisms \(f : P_1 \rightarrow P_2 \)

\(P_1, P_2 \) are f.g. \(A \)-modules, \(y \) after inverting \(f \)

\(A = R[t], \quad f = t \):

\[K(R) \rightarrow K(R[t]) \rightarrow K(R[t, t^{-1}]) \xrightarrow{(*)} \]

\(\text{Or} \)
\(R : \mathbb{K}[t] \to \mathbb{K}[t'] \to (\mathbb{K}[t'] \to \mathbb{K}[t]) \)

(in the \(\mathbb{K}(R) \to \mathbb{K}(\mathbb{K}[t]) \) different)

\(M \to \mathbb{K}[t] \to \) maps

\(\mathbb{K} \to R[t] \) off inverse

Why \(r \) is 0: Because \(\mathbb{K} \) has a "function:

\[R[t] \to R[t'/t] \to \mathbb{K} \]

right inverse

\[\vdash \text{in } \mathbb{K} \text{- theory} \]

\[\vdash \text{also induces } \]

\[\vdash \text{induces } \]
mixed

unmixed

(\text{R}_\mathbb{Z} \text{ does not share})

X \leftrightarrow \mathbb{C}, \forall C \in C.

A \leftrightarrow \mathbb{C}, \forall C.

K(\mathbb{Z}, \mathbb{Z}) \sim K(\mathbb{R}) \land \mathbb{Z} \subseteq \mathbb{R}.

(\text{implies: cluster method is a weaker version})
Some more comment on motivic and classical stable homotopy theory:

Classically, $K^*(k) = \mathbb{Z}$ even dimension
0 in odd dimension.

Unplanned set

For any space X, there is a construction of n-connected cover X^n ($n=1$: the universal cover).
Therefore, we may assume X is simply connected.

Suppose we have constructed X^m. By Hurewicz' theorem,

$$
\pi_i X^m = 0 \quad \text{for} \quad i \leq m
$$

There is a map $\phi : X^m \to X$

which induces $\in \pi_i$ for $i > m$.

Suppose X^{m-1} has been constructed. Then by Hurewicz' theorem,

$$
H_i(X^{m-1}; \mathbb{Z}) = 0 \quad \text{for} \quad i \leq m-1,
$$

$$
G = H_m(X^{m-1}; \mathbb{Z}) \cong \pi_m(X^{m-1})
$$

Hurewicz' map.
By the universal coefficient theorem,

\[H^n(X^{n-1}, \mathbb{Z}) \cong \text{Hom}(\mathbb{Z}, B) \]

This is called the characteristic map represented by \(\phi : X^{n-1} \to K(B, m) \).

The Hurewicz map gives that \(\phi \) induces the identity in \(\pi_m \) (i.e., \(\pi_m(X^{n-1}) = \pi_m(K(B, m)) = 0 \)). Take \(X^n \) to be the homotopy fiber of \(\phi : X^{n-1} \to K(B, m) \).

By the LCS in \(\pi_n \), the composition

\[X^n \to X^{n-1} \to X \]
induces \(\tilde{i} \) in \(\Pi_k \), \(i > n \).

This is called the Postnikov tower of the space \(X \).

[Postnikov theorem says that if \(X \) is simply connected, then the fiber bundle \(\mathcal{F}(n, m - 1) \rightarrow X^m \rightarrow X^{m-1} \)

\(\cong \)

\(\pi_k \mathcal{F}(n, m) \) topological abelian group

is principal \(G \) classified by a map \(X^{m-1} \rightarrow B\mathcal{F}(n, m-1) \)

\(\cong \pi_k \mathcal{F}(n, m) \).

\(c \in H^m(X^{m-1}; G) \)

This is called the Postnikov invariant.]
There is a stable analogue:

\[E^{\text{p spectrum represented by}} \]

\[\tilde{Z}_n \cong S\tilde{Z}_{n+1}, \quad n \in \mathbb{N} \]

\(n \)

infinite loop spaces

\(k \)-connected cover of \(E \): take the

\((k+1)-\text{connected}\) \(\tilde{Z}_n = (m+k)\)-connected cover

of \(\tilde{Z}_m \)

\[\tilde{Z}_n \cong S\tilde{Z}_{n+1}, \quad n \in \mathbb{N} \] for a spectrum \(E \).
\[\pi_i E = 0 \text{ for } i > k \]

\[2^n \rightarrow \mathbb{P}^{2n+1} \]

\[\phi : E^k \rightarrow E \]

The Postnikov tower of spectra.

\[\text{This yields the Atiyah-Hirzebruch spectral sequence:} \]

\[E_2^{pq} = H^p(X; E^q(x)) \Rightarrow E^{p+q+2}(X) \]

The homotopy tower of spectra.

Alternate construction: via CW decomposition of \(X \) "conditionally"
Example:

\[K^*(\mathbb{C}P^n) \]

\[H^b(\mathbb{C}P^n, \mathcal{O}(1)) = H^{b+2}(\mathbb{C}P^n) \]

\[d: E_r \rightarrow E_{r+1} \]

\[E_r^{p,q} = H^{p+q}(X, \mathbb{Z}(r+1)) \]

\[K^*(\mathbb{C}P^n) = \mathbb{Z}^{\text{even}} \]

\[\text{for differential} \]
There is an analogue for algebraic K-theory.

Instead of the particular tower, we use something called

the slice tower (Block: Higher Chow groups)

the "hard moving lemma" is (possibly)

formal construction

still not known

Fixed by Levine

Which gives a spectral sequence:

To get the indexing, the associated graded pieces
It gives a spectral sequence from Chow groups to algebraic K-theory (maybe more detail next time).

This gives an application of Voevodsky's theorem:

Say, you are willing to complete at k, say, for a field (or for all varieties)

you can compute Chow groups CH^d completely from Voevodsky's

And then we have a spectral sequence to K-theory.
E.g. $K(\mathbb{Q})^3$ is known by this method. localized at $2 : \otimes \mathbb{Z}_{(2)}$. $K \mathbb{Z}$ is finitely generated: $K \mathbb{Z}_2$. (Weibel.)

(maybe even globally)