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Abstract. We investigate certain adjunctions in derived cate-
gories of equivariant spectra, including a right adjoint to fixed
points, a right adjoint to pullback by an isometry of universes,
and a chain of two right adjoints to geometric fixed points. This
leads to a variety of interesting other adjunctions, including a chain
of 6 (sometimes 7) adjunctions involving the restriction functor to
a subgroup of a finite group on equivariant spectra indexed over
the trivial universe.

1. Introduction

In equivariant stable homotopy theory, we study, for a compact
Lie group G, generalized cohomology theories which are stable un-
der suspensions by 1-point compactifications of finite-dimensional G-
representations. Such theories are represented in the derived category
DG-U -spectra where U is the complete universe ([9]), i.e. a countably-
dimensional G-inner product space containing infinitely many copies of
all irreducible G-representations. Certain functors come up naturally
when studying these theories, for example the fixed point functor (?)G,
which is used in calculating homotopy groups, and also the geomet-
ric fixed point functor ΦG, which was quite important in the work of
Hu and Kriz [7] on Real-oriented Z/2-spectra, as far as, later, in the
solution by Hill, Hopkins and Ravenel [6] of the Kervaire invariant 1
problem.

The left derived functor of the functor ΦG has a right adjoint, which
again has a right adjoint. (Throughout this paper, we will focus on the
derived context, so this language will often be omitted.) In a recent
paper [1], Balmer, Dell’Ambrogio and Sanders investigated a general
framework in which certain “geometric functors” between tensor trian-
gulated categories have two right adjoints. In fact, they proved that
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under suitable assumptions (see Section 2 below), only three possibil-
ities arise, namely a chain of 3, 5 or infinitely many adjoints on both
sides. Geometric fixed points, in the case of a complete universe, sat-
isfy the assumptions of [1], and in this context (see also [2]), it seemed
interesting to look at this example more closely.

In a recent paper [11], B. Sanders investigates another example of the
3-adjunction [1], namely “inflation”, i.e. the fixed G-spectrum, indexed
over the complete universe, associated with a spectrum X. In fact,
Sanders introduces a beautiful formalism which enables an abstract
treatment of the Adams isomorphism. The right adjoint of the inflation
functor on the level of derived categories is the fixed point functor (?)G
of a spectrum indexed over the complete universe. Again, by the work
of [1], this functor has an additional right adjoint on derived categories,
which the authors of the present paper also observed independently in
connection with their work on spectral Lie algebras [8]. Unlike the
case of geometric fixed points, this functor, however, is much harder to
describe, and even now remains somewhat mysterious.

Inspecting this example more closely suggests looking beyond the
case of a complete universe. The reason is that the fixed point functor
(?)G on the derived category DG-U -spectra really is a composition
of two functors, the first one of which is pullback i∗ via the inclusion
i ∶ U G → U from the “trivial universe” U G ≅ R∞. On spectra indexed
over the trivial universe (which represent generalized cohomology the-
ories only stable with respect to ordinary suspensions), geometric and
ordinary fixed points are the same thing.

A natural question then arises: Does the pullback i∗ with respect to
an isometry of universes also have a right adjoint on the level of derived
categories? Are the observations of the previous paragraphs also true
for non-complete universes? The answer to the first question is yes, as
is, for the most part, the answer to the second question. It is important
to note, however, that we are now leaving the world of the assumptions
of [1], since for spectra indexed over a non-complete universe, the im-
portant assumption of [1] that compact objects be strongly dualizable
precisely fails for those triangulated categories.

Since inflation is a case of functoriality with respect to change of
groups (the case of a surjection), what about restriction, i.e. the case
of an injection of groups? In this case, for complete universes, we have
the well known Wirthmüller isomorphism [9], which also was a part of
the inspiration for [1] as well as, for example, Fausk, Hu and May [5].
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What happens in the case of non-complete universes? It turns out that
in this case, which does not satisfy the assumptions of [1], we always
have a chain of 4 adjunctions. However, in the case of a finite group
and the trivial universe, we show that there is, in fact, a chain of 6
adjunctions, and in the case of a finite abelian group and the trivial
subgroup for the trivial universe, there is a chain of 7 adjunctions. In
special cases, this can be worked out quite explicitly. We also have
counterexamples showing that in general, these chains of adjunctions
extend no further.

In a closely related case of the endofunctor of smashing with a finite
spectrum, we again have a chain of infinitely many adjunctions on
both sides in the case of a complete universe, but we always have a
chain of three adjunctions, and for the case of a finite group and the
trivial universe, we have a chain of 5 adjunctions (6 adjunctions in the
case of a primary cyclic group). In both cases, these chains extend
no further in general. These endofunctors, in fact, give us, at least
in principle, a description of the right adjoint to pullback along an
isometry of universes.

The purpose of the present paper is to treat these situations as com-
pletely as we are, at the moment, able, both in terms of positive state-
ments and counterexamples, since they appear to be important for the
foundations of equivariant stable homotopy theory. Here is a more
detailed description of the situations we consider:

(A) Restriction. It is a tradition from group cohomology to sep-
arate pullback with respect to a homomorphism of groups into
the case when the homomorphism is injective (restriction) and
surjective (inflation). For equivariant spectra, too, the two cases
behave somewhat differently, and for this reason, we, too, treat
them separately. The forgetful functor res = resGH ∶ DG-U -
spetra→ DH-U -spectra where H ⊆ G is the forgetful functor
to a closed subgroup of a compact Lie group G, and U is any
universe (not necessarily complete). This functor is well known
to have a left adjoint G⋉H? and a right adjoint FH[G, ?). We
show that FH[G, ?) also has a right adjoint ΞG

H . The “left pro-
jection formula” in the sense of [1], (3.11) is well known to hold,
but we show that the “right projection formula” in the sense of
[1], (2.16) is false in general. It is well known that if U is the
complete G-universe, then the left and right adjoints to resGH
are “shifts” of each other, and hence the chain of adjunctions
described extends to an infinite chain of adjunctions on both
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sides. This is the Wirthmüller isomorphism. However, we show
by example that for a general universe, G ⋉H (?) may not have
a left adjoint, and ΞG

H may not have a right adjoint. Thus, we
have a chain of 4 adjoints in general. We show however that
in the case when U = R∞ is the “trivial” universe and G is
finite, then G⋉H? has two more adjoints to the left (thus giving
a chain of a total of 6 adjoints), and when G is abelian and
finite, then G⋉H? has three adjoints to the left (thus giving a
chain of 7 adjoints). In both cases, we have examples showing
that this chain of adjoints may not extend any further.

(B) Smashing with a finite spectrum. Let X be a retract of a
finite cell G-U -spectrum for any universe U . Then the func-
tor X∧? ∶ DG-U -spectra→ DG-U -spectra has a right adjoint
F (X, ?). We show that this functor has a further right ad-
joint R(X, ?). In the case when U is a complete universe,
F (X, ?) = DX∧?, and hence R(X, ?) = X∧?. However, we
show that in general, R(X, ?) does not have a right adjoint. On
the other hand, we show that X∧? always has two left adjoints
(leading to a chain of at least 5 adjunctions), and for G = Z/p
it has exactly three (leading to a chain of 6 adjunctions).

(C) Change of universe. For an isometry of G-universes i ∶ U →
V for a compact Lie group G, the universe change functor i∗ ∶
DG-V -spectra→ DG-U -spectra is well known to have a left
adjoint, which we denote by i♯. We prove that it also has a
right adjoint, which we denote by i∗. (In [9], i♯ was denoted by
i∗. However, in all sorts of contexts of sheaf theory, i∗ is always
the right adjoint, which is why we use the alternate notation.)
We show that in general, i♯ does not have a left adjoint, and i∗
does not have a right adjoint. The projection formula [1] (2.16)
is false. We have a chain of 3 adjunctions in this case.

(D) Inflation. For a compact Lie group G, a G-universe U , and
an onto homomorphism of compact Lie groups G → J = G/H
for a closed normal subgroup H of G, we have the functor inf =
infJG = U infJG ∶ U H-J-spectra→ U -G-spectra. This functor is
most universal when U is an H-fixed universe, since in general
we have

(1) U inf
J
G = i♯ ○ U H infJG

where i ∶ U H → U is the inclusion. In the case when U is
an H-fixed universe, infJG has a left adjoint ?/H and a right
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adjoint (?)H which has a right adjoint Ẽ[H] ∧ infJG, which has

a further right adjoint F (Ẽ[H], ?)H . No further right or left
adjoints exist, so this is a chain of 5 adjunctions. Further, the
left and right projection formulas [1] (3.11), (2.16) hold and

Ẽ[H] is the “dualizing object” in the sense of [1], even though
the assumptions of [1] are not satisfied. If U is an arbitrary
universe, then in general, U infJG has no left adjoint, and its

right adjoint (?)H has a right adjoint i∗(Ẽ[H]∧infJG), which in
general has no right adjoint, so this is a chain of 3 adjunctions.
The right projection formula is true. In the case when U is a
complete universe, this case satisfies the assumptions of [1].

(E) Geometric fixed points. For a compact Lie group G and
any G-universe U , and J = G/H for a closed normal subgroup

H ⊆ G, we may consider the functor ΦH = U ΦH = (Ẽ[H]∧?)H ∶
DG-U -spectra→ U H-J-spectra. This functor is most univer-
sal when U is the largest universe with given U H (up to iso-
morphism), since for a general embedding i ∶ U → V where
V H ≅ U H , we have

U ΦG = V ΦG ○ i♯.
In the case when U is a complete universe, the assumptions
of [1] are satisfied, and a 3-duality therefore holds. In other
words, U ΦG has a right adjoint, which again has a right adjoint,
and the projection formula holds. This adjunction in general
extends no further, so this is a case of 3-duality in the sense of
[1]. If U is not a complete universe, we still have a 3-duality,
and the projection formula still holds.

2. The main results

Let us begin by reviewing the setup of Balmer, Dell’Ambrogio and
Sanders [1]. In the greatest generality, they talk about triangulated
categories. A triangulated category T is called compactly generated if it
has coproducts, and has a set of compact objects G which generate T .
To generate means that if for x ∈ Obj(T ), for every z ∈ G , T (z, x) = 0,
then x = 0. An object x of T is called compact if T (x, ?) sends
coproducts to coproducts of abelian groups.

In this paper, we consider the derived categories of G-U -spectra
where G is a compact Lie group, and U is a universe. These categories
are compactly generated, where the generators are (integral) suspen-
sions of suspension spectra of orbits (by closed subgroups). These



6 PO HU, IGOR KRIZ AND PETR SOMBERG

spectra generate essentially by definition of the derived category (see
[9, 4]). The fact that these generators are compact is widely known and
widely used, but since we could not locate a proof in the literature, we
present one in the Appendix.

The authors of [1] use the following two facts to construct adjoint
functors:

Lemma 1. ([1], Corollary 2.3) Let F ∶ T →S be an exact (=triangle-
preserving) functor between triangulated categories, where T is com-
pactly generated. Then

(a) F has a right adjoint if and only if it preserves coproducts
(b) F has a left adjoint if and only if it preserves products.

◻

Lemma 2. ([1], Lemma 2.5) Let F ∶ T → S be left adjoint to G ∶
S → T where F,G are exact functors between triangulated categories,
and T is compactly generated. Then F preserves compact objects if
and only if G preserves coproducts.

◻

The authors of [1] investigate patterns of adjunction of the following
form:

(2) f∗

��
f(1)

��
f∗

OO

and

(3) f∗

��
f(1)

��
f(1)

OO
f∗

OO
f(−1)

OO

Their assumption is that f∗ ∶ T → S is an exact functor between
compactly generated tensor triangulated categories which preserves the
symmetric monoidal structure, and preserves coproducts. They addi-
tionally assume that both in T and S , compact objects are strongly
dualizable. Under these assumptions, they prove that (2) always oc-
curs, and additionally, one has the right projection formula stating that
we have an isomorphism

(4) x ∧ f∗(y)
≅ // f∗(f∗(x) ∧ y)

where (4) is the canonical morphism. (We write the symmetric monoidal
structure as ∧, since in the topological contexts we discuss, it is always
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the smash product). The dualizing object by definition is f (1)(1) where
1 is the unit of the symmetric monoidal structure (in all our cases, this
is the sphere spectrum S in the appropriate category). Then the au-
thors of [1] prove that the additional right adjoint f(−1) exists if and
only if the additional left adjoint f(1) exists, leading to the (3) scenario.
Additionally, if that happens, they prove the left projection formula

(5) f(1)(f∗(x) ∧ y)
≅ // x ∧ f(1)(y)

where (5) is, again, the canonical morphism.
The authors of [1] also prove that if either f(1) admits a left adjoint

or f(−1) admits a right adjoint, then (3) extends to an infinite chain of
adjunctions on both sides.

The category DG-U -spectra for a compact Lie group G and a uni-
verse U is always compactly generated, where the compact generators
are (de)suspensions of suspension spectra of orbits. Further, compact
objects are strongly dualizable when U is a complete universe (i.e.
contains representatives of all isomorphism classes of finite-dimensional
G-representations). However, compact objects are not strongly dual-
izable in general, notably when G is non-trivial and U is the trivial
universe, containing only copies of the trivial representation. There-
fore, the conclusions of [1] do not, strictly speaking, apply to most of
our situations. Nevertheless, Lemmas 1 and 2 have the immediate

Corollary 3. If a functor f∗ ∶ T →S is an exact functor where T ,S
are compactly generated triangulated categories, preserves compact ob-
jects and coproducts, then it has a right adjoint f∗ which in turn has
another right adjoint f (1), i.e. the scenario (2) occurs.

Proof. By Lemma 1, a right adjoint f∗ exists and, by Lemma 2, it
preserves coproducts. Additionally, since T is compactly generated,
distinguished triangles can be tested by long exact sequences on mor-
phism groups from compact objects, so f∗ preserves distinguished tri-
angles by adjunction and by the fact that f∗ preserves compact objects.
Therefore, the additional right adjoint f (1) exists by Lemma 2. ◻

Comment: When a triangulated category is compactly generated,
compact objects are precisely objects of the smallest thick subcategory
generated by the compact generators. Therefore, for the functor f∗

to preserve compact objects, it is sufficient to show that it sends the
compact generators to compact objects.
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In the scenarios described in the introduction, the functors resGH of
Case (A), X∧? of Case (B), i♯ of Case (C), U (?)fixed of Case (D) and

U ΦG of Case (E) are all exact functors which preserve compact gener-
ators and coproducts, so Corollary 3 applies if we take these functors
for f∗. In other words, a right adjoint f∗ exists which, in turn, has
again a right adjoint f (1). Interestingly, the functors f (1) in this case
do not appear to have been noticed in most cases. In this note, we will
consider some examples.

Before that, however, let us discuss the (3) scenario, i.e. the case of
a chain of 5 adjoints. It turns out that under our weaker assumptions,
this is false. Nevertheless, the existence of the functors f(1) and f(−1)
can still be tested using the following

Corollary 4. If f∗ ∶ T → S is an exact functor between compactly
generated triangulated categories which preserves coproducts and com-
pact objects. Then the functor f (1) has a right adjoint if and only if
f∗ preserves compact objects, and f∗ has a left adjoint if and only if it
preserves products.

Proof. The first statement follows from Lemma 2 and Lemma 1 (a),
and the second statement follows from Lemma 1 (b). ◻

In case (A) and (B) of the Introduction, the functor f(1) exists, but
in general the functor f(−1) does not. In case (C), in general neither
f(1) nor f(−1) exists. In case (D) for a trivial universe, both f(1) and
f(−1) exist, and in cases (E) for the complete universe, neither f(1) nor
f(−1) exists in general.

Additionally, in cases (A), (C), (D) and (E), the functor f∗ preserves
symmetric monoidal structure, and hence we can ask about the pro-
jection formulas (4) and (5). In case (A), the formula (5) holds, but
the formula (4) is false in general. In case (C), the formula (4) is false
in general. In case (D) for a trivial universe, the formula (5) is false
in general, and the formula (5) is true for the trivial universe but false
in general. In case (E), the formula (4) for a complete universe holds
(this follows from Theorem 2.15 of [1], since the assumptions in this
case are satisfied). For a general universe, the formula (4) is false in
this case.

We now turn to discussing each case of the Introduction individually
in more detail.
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2.1. Inflation for the case of an H-fixed universe. We will discuss
this part of Case (D) first, since it will be used in our other discussions.
Here we have a normal subgroup H of G, J = G/H, and f∗ = infJG ∶
DJ-U -spectra→ G-U -spectra, where U = U H . Unless H = {e}, the
assumptions of [1] are never satisfied. Nevertheless, we have a more or
less fully functional “5-scenario” of [1]. A left adjoint of f∗ is f(1) =?/H
(more precisely its left derived functor, i.e. ? should be a cell spectrum),
while a right adjoint is f∗ =?H , which in turn has a right adjoint f (1) =
(infJG(?))∧ Ẽ[H] where E[H] = EF [H] is the classifying space of the
family F [H] of closed subgroups of G which H is not subconjugate

to. Here X̃ means the unreduced suspension of a G-space X. To see

this, mapping a G-U -cell spectrum X to infJGY ∧ Ẽ[H] where Y is a
J-U -cell spectrum, the cells of X with isotropy superconjugate to H
(which cannot be attached to cells with isotropy not superconjugate to
H, since U is H-fixed) must map to Y , while there is no obstruction to

mapping any other cells to infJGY ∧Ẽ[H]; a similar argument applies to

homotopies. The functor f (1) has a right adjoint f(−1) = F (Ẽ[H], ?)H .
It is also worth noting that not only the functor f∗, but also the functors
f∗ and f (1) are strongly symmetric monoidal in this case.

The left projection formula (5) states that

(infJG(X) ∧ Y )/H ∼ // X ∧ (Y /H),

which is true (by induction on cells of X). The right projection formula
(4) states that

X ∧ (Y H) ∼ // (infJG(X) ∧ Y )H ,

which is also true by a similar induction, since U is, again, H-fixed.
The “dualizing object” in this case is the G-U -suspension spectrum

of Ẽ[H]. The functor f (1) does not generally preserve compact objects,
since the dualizing object is not compact. (For example for G = H =
Z/2, and the trivial universe, it suffices to show that EZ/2+ is not
compact, which, since ?/H preserves compacts, reduces to showing
that BZ/2+ is not a compact spectrum. This is well known (and also
follows, for example, from Lemma 7 of the Appendix.) Thus, f(−1) in
general does not have a right adjoint.

On the other hand, f(1) does not in general preserve products. Again,
forG =H = Z/2 and the trivial universe, consider the countable product
of the spectra EZ/2+ ∧K (where K is, say, the fixed K-theory Z/2-
spectrum). The countable product of these spectra still has 0 fixed
points, so it is equivalent to EZ/2+ ∧∏

N
K. Thus, applying ?/(Z/2)
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gives the morphism (23) of the Appendix, which is not an equivalence
by Lemma 7. Thus, in general, f(1) does not have a left adjoint.

2.2. Restriction. Let f∗ = resGH ∶ DG-U -spectra → DH-U -spectra
be the forgetful functor where U is any universe. We have a left adjoint
f(1) = G⋉H? and a right adjoint f∗ = FH[G, ?). It is well known [9] that
the left projection formula (5) holds. By Corollary 3, f∗ always has
another right adjoint, f (1). When U is the complete universe, then,
of course, the assumptions of [1] are satisfied, and in fact the classical
Wirthmüller isomorphism [9] asserts that we have an infinite chain of
adjunctions. To get a feel for what the functor f (1) is like in general,
let us consider an example.

Let us consider the case when G = Z/2, H = {e}, and U = R∞ is
the trivial universe. In this case, we have a cofibration sequence for an
{e}-spectrum X

(6) Z/2+ ∧X → F (Z/2+,X)→ ẼZ/2 ∧ inf {e}
Z/2X

which can be written in the framework (2) as

(7) f(1)(X)→ f∗(X)→ ẼZ/2 ∧ inf {e}
Z/2X.

By the results of Subsection 2.1, the last term of the cofibration se-
quence (7) is in fact the right adjoint to the functor (?)Z/2 on derived
categories. To explain how (6) arises, one has f∗f∗(X) = X ×X, and
the first map (6) is the adjoint to the canonical map X → X × {∗} →
X × X. The first morphism (6) is by definition an equivalence non-
equivariantly, but the source has trivial fixed points, while the target
has fixed points X (embedded diagonally). Thus, the cofiber in (6)
has fixed points X and is trivial non-equivariantly. Since the cate-
gory DG-R∞-spectra (“naive” G-spectra) for G finite is equivalent to
the diagram derived category of functors from orbit category OG into

spectra, we see that the cofiber (6) is equivalent to ẼZ/2 ∧ inf {e}
Z/2X.

In fact, for X = S, the cofibration (6) can be realized geometrically
by stabilizing the canonical cofibration

Sn ∨ Sn → Sn × Sn → Sn ∧ Sn,

where all terms are given the Z/2-equivariant structure with the gen-
erator of Z/2 switching factors. This lets us describe the connecting
map as a stabilization of the map

(8) Sn+nα → Z/2+ ∧ Sn+1
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(α is the 1-dimensional real sign representation) as the (trivial) sus-
pension of the following map: in S2n−1, consider an embedding of
Sn−1 × Sn−1, thus splitting S2n−1 into two solid tori Sn−1 ×Dn. Con-
sider the Z/2-equivariant structure where the generator swaps the two
factors of Sn−1 × Sn−1, and the two solid tori. Then we get a map into
Sn ∨Sn by collapsing Sn−1 ×Sn−1 to a point, and projecting each solid
torus Sn−1 ×Dn to Dn (with the boundary collapsed to a point). This
map is equivariant when we consider on Sn ∨ Sn the Z/2-equivariant
structure where the generator swaps factors.

We can see that the connecting map is non-trivial by observing that
applying f(1) = (?)/(Z/2) to the first morphism (6), we obtain the
canonical map

(9) X → Sp2(X)

which does not split for X = S by considering Steenrod operations.

We may also observe that dualizing (7) gives a cofibration

(10) F (ẼZ/2, Y )Z/2 → f (1)Y → f∗(Y )

which is an explicit description of f (1), granted that we understand the
connecting map.

We see from the description (10) that in this case f (1) does not have

a right adjoint, since f∗ does but F (ẼZ/2, ?)Z/2 does not, as already
shown in Subsection 2.1.

However, from formula (6), we see that inductively, Z/2+∧? has as

many left adjoints as the last term of the cofibration ẼZ/2 ∧ inf {e}
Z/2?,

which, as we showed in Subsection 2.1, is a total of 3 left adjoints,
and not more. Thus, in this case, precisely the functors f(−1), f(2),
f (−2) exist, leading to a chain of a total of 7 adjunctions. In fact,
these functors can be described geometrically by taking successive left
adjoints of (6): We have

f (−1)X = resZ/2{e}X/XZ/2,

f(2)Y is the fiber of the canonical morphism Z/2+ ∧ Y → inf
{e}
Z/2Y , and

f (−2)X is the cofiber of a morphism

X/(Z/2)→ res
Z/2
{e}X/XZ/2,

which is a variant of the transfer. Again, we see that this functor has
no left adjoint.
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One can also see that the right projection formula (4) fails for the
case G = Z/2, H = {e} and the trivial universe. In effect, if this formula
were true, it would say (putting Y = S) that for a Z/2-R∞-spectrum
X, the canonical morphism

(11) X ∧ F (Z/2+, S)→ F (Z/2+, inf {e}
Z/2res

Z/2
{e}X)

is an equivalence. Since the analogous statement with F (Z/2+, ?) re-
placed by Z/2+∧? holds, this is equivalent to the canonical morphism

(12) ẼZ/2 ∧X → ẼZ/2 ∧ inf {e}
Z/2res

Z/2
{e}X

being an equivalence (since ẼZ/2∧X ∼ ẼZ/2∧(XZ/2)fixed, the canoni-
cal morphism (12) is induced by the canonical morphism XZ/2 → E{e},
which is also (12) on fixed points). Thus, (12) is not an equivalence
when X is not fixed, and hence neither is (11).

What in this example can be generalized? Let us specialize to the
case of a finite group G and the trivial universe. (The main significance
of the finiteness being that the orbit category is finite.) In this case,
the cofiber sequence (6) generalizes to

(13) G ⋉H X → FH[G,X)→ ̃EF (H) ∧ FH[G,X)

where F (H) is the family of all subgroups of G subconjugate to H.
The cofibration sequence (13) can be used to gain information on both
left and right adjoints. Recall that for a subgroup K of G which is not
subconjugate to H, we have

FH[G,X)K ∼ ∏
a∈K/G/H

XH∩a−1Ka.

Denote, as usual, byN(K) the normalizer ofK, andW (K) = N(K)/K.
Recall that, for a general (not necessarily normal) subgroup K of G,
(?)K is a functor DG-R∞-spectra→DW (K)-R∞-spectra. As a W (K)-
spectrum,

(14) FH[G,X)K ∼ ⋁
[a]∈N(K)/G/H

FW (K,H)[W (K),XH∩a−1Ka)

where

W (K,H) = a
−1Ka ⋅H ∩ a−1N(K)a

a−1Ka
.

We can express ̃EF (H) ∧ FH[G,X) as a finite homotopy (co)limit of
G-R∞-spectra of the form

G ⋉N(K) (FH[G,X)K)
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where K is not subconjugate to H, so by formula (14) and (13), we
can, in principle, inductively write down a model for the right adjoint
of FH[G,X) (since ∣W (K)∣ < ∣G∣).

On the other hand, formula (13) can also be used to construct two
left adjoints to G ⋉H X. By induction, again, it suffices to prove that
the functor ẼF [H] ∧? has two left adjoints. This follows from the
following general fact, which can be traced back to [9].

Proposition 5. For any family F of subgroups of a finite group G,
the functor

(15) ẼF∧? ∶DG-R∞-spectra→DG-R∞-spectra

has two left adjoints.

Proof. Recall that the category DG-R∞-spectra is equivalent to the
diagram derived category of OOpG -spectra (i.e. with object-wise equiva-
lences) where OG is the orbit category of G. We can identify a family
F with a full subcategory of OG on the subgroups which belong to the
family, and the corresponding co-family F̃ with the full subcategory
of OG on all the remaining subgroups.

For an FOp-spectrum X, a G-R∞-spectrum ẼF ∧X is well-defined,
and if we denote this functor by φ∗, it is right adjoint to the forgetful
functor φ∗ from G-R∞-spectra (=OOpG -spectra) to F̃Op-spectra. This

functor then has a left adjoint φ♯ = OOpG ⋉F̃ ?. The left adjoint to (15)
is φ♯φ∗.

To show that a further left adjoint exists, by Corollary 4, it suffices
to show that the functor φ♯φ∗ preserves products. This follows from
the following result. ◻

Lemma 6. Let C be a finite category in which every endomorphism
has an inverse, and let F be a contravariant functor from C to finite
sets. Suppose that for every x ∈ Obj(C ), C (x,x) acts freely (from the
right) on F (x). Then the functor

(16) B∧(F+,C+, ?) ∶ C -spectra→ Spectra

preserves products.

Proof. In the case when C is a group, under our assumptions, the
functor (16) is just a “sum of finitely many copies”, so it preserves
products. In the general case, it arises from the corresponding functors
for the automorphism groups of C by a finite homotopy colimit over a
poset, so the conclusion follows from stability. ◻
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It is not difficult to give an example of an inclusion of finite group
H ⊂ G where the functor G⋉H? from H-R∞-spectra to G-R∞-spectra
does not have three left adjoints. Let G = Z/4, H = Z/2. In this case,
(13) becomes

(17) (Z/4) ⋉Z/2X → FZ/2[Z/4,X)→ Ẽ[Z/4] ∧XZ/2,

so again by induction, the existence of three left adjoints to (Z/4)⋉Z/2?
would be equivalent to the existence of three left adjoints to Ẽ[Z/4] ∧
XZ/2. We know however that the left adjoint to that functor is inf

{e}
Z/2(?)Z/4,

whose left adjoint, in turn, is inf
{e}
Z/4(?/(Z/2). This functor does not

preserve products, since ?/(Z/2) does not, and inf
{e}
Z/4 has a left in-

verse ?Z/4, which preserves products. Thus, inf
{e}
Z/4(?/(Z/2)) has no left

adjoint, as claimed.

On the other hand, if G is finite abelian, the functor G⋉? from
spectra to G-R∞-spectra does have three left adjoints (and hence resG{e}
has four left adjoints, leading to a chain of 7 adjoints). Again, it suffices
to show that the rightmost term of the cofibraion sequence (13), which

in this case is ẼG∧F [G, ?), has three left adjoints. Again, we can model

ẼG as a finite homotopy colimit of Ẽ[H] for subgroups {e} ≠ H ⊆ G,

and therefore it suffices to show that Ẽ[H]∧F [G, ?) ∼ Ẽ[H]∧F [G, ?)H
have three left adjoints. However, for a spectrum X, F [G,X)H is a
sum of (finitely many) copies of X, so we are reduced to showing that

Ẽ[H] ∧X from spectra to G-R∞-spectra has three left adjoints. But
the left adjoint to that functor is (resGH?)H , which we already know
has two left adjoints.

2.3. Smashing with a finite spectrum. Here we are not dealing
with symmetric monoidal functors, so there is no discussion of pro-
jection formulas. Clearly, however, it suffices to consider the case of
smashing with orbits G/H+ where H is a closed subgroup of G. This
functor is isomorphic to G ⋉ (resGH?), so we already know that it has
two right adjoints, and hence so does X∧? for a finite spectrum X.
Of course, the first right adjoint (the existence of which does not need
finiteness of X) is F (X, ?). In the case when X is finite, a model
of the second right adjoint, in principle, follows from the material
of Subsection 2.2. If U is a complete universe, we of course have
F (X, ?) = DX∧?, so there is an infinite chain of adjunctions in both
directions.
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We can show that the right adjoint to the endofunctor F (Z/2+, ?)
in DZ/2-R∞-spectra has no right adjoint. In effect, in view of the
cofibration sequence (6) and Corollary 4, this reduces to showing that

the functor ẼZ/2 ∧ inf {e}
Z/2res

Z/2
{e}? does not preserve compact objects.

This follows from what we showed in Subsection 2.2, since res
Z/2
{e} has

a right inverse inf
{e}
Z/2 .

Regarding left adjoints, it follows from what we showed in Subsection
(2.2) that the endofunctor G ⋉ (resGH?), and hence the endofunctor
X∧? for X a finite spectrum, in DG-R∞-spectra with G finite has two
left adjoints, thus leading to a chain of 5 adjunctions involving X∧?.
Furthermore, for G = Z/p, since the only orbits are trivial and Z/p, also
by the results of Subsection 2.2, we have a third left adjoint, leading
to a chain of 6 adjunctions.

In the case when G = Z/2, U = R∞, we can show that no further left
adjoints exist. In effect, by the results of Subsection (2.2), the first left

adjoint to Z/2⋉resZ/2{e}X is Z/2⋉(resZ/2{e}X/XZ/2), and hence the second

left adjoint is the fiber of the canonical morphism

(18) Z/2 ⋉ (resZ/2{e}X/XZ/2))→ inf
{e}
Z/2(res

Z/2
{e}X/XZ/2).

Since the first one of these functors has two left adjoints, it suffices to
show that the second one does not. Now the left adjoint to the second
functor (18) is the cofiber of

Z/2 ⋉ (X/(Z/2))→ inf
{e}
Z/2(X/(Z/2))

which does not preserve products (for example, applying res
Z/2
{e} , we get

X/(Z/2) again, which we already showed does not preserve products.
Thus, we have a chain of precisely 6 adjunctions in this case.

In the case when G = Z/4, U = R∞, X = (Z/4)/(Z/2)+, we can
show that a third left adjoint does not exist, thus leading to a chain
of precisely 5 adjunctions. In effect, by (17), it suffices, again, to work

with the endofunctor Ẽ[Z/4] ∧ (resZ/4Z/2X)Z/2 instead. Its left adjoint

is Z/4 ⋉Z/2 inf
{e}
Z/2(XZ/4), which we can represent as the fiber of the

morphism

FZ/2[Z/4, inf {e}
Z/2(X

Z/4))→ Ẽ[Z/4] ∧ (inf {e}
Z/2(X

Z/4))Z/2.

The second functor is Ẽ[Z/4] ∧XZ/4, which we already know has two

left adjoints, so it suffices to show that FZ/2[Z/4, inf {e}
Z/2(XZ/4)) does
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not. In effect, its left adjoint is inf
{e}
Z/4((res

Z/4
Z/2X)/(Z/2)). This functor

does not preserve products: Since inf
{e}
Z/4 has a left inverse res

Z/4
{e} which

preserves products, it suffices to show that (resZ/4Z/2X)/(Z/2) does not

preserve products, but that follows from the same example as before.

2.4. Change of universe. Let i ∶ U → V be an isometry of G-
universes. Then recall that a G-V -spectrum Y as an object of the de-
rived category can be described by describing the G-U -spectra i∗ΣV Y
where V runs through finite-dimensional G-representations contained
in V (it suffices to consider those representations V which do not have
irreducible summands in U ). Thus, to describe i∗, it suffices to de-
scribe i∗ΣV i∗, which is right adjoint to

(19) i∗Σ−V i♯X = ΩV i∗i♯X = hocolim
W

ΩW+V ΣWX

where again, W runs through subrepresentations of V with no irre-
ducible summand contained in U . But we know that ΩW has right
adjoint RW = R(SW , ?), so the right adjoint to (19) is

(20) i∗ΣV i∗X = holim
W

ΩWRW+VX.

From this point of view, we have a description of the functor i∗.

Regarding additional adjoints, in general, i♯ does not preserve prod-
ucts, and thus does not have a left adjoint. To see this, let us consider
again the case G = Z/2, where U = R∞ is the trivial universe and V is
the complete universe. We will show that the functor

(i∗(i♯(inf {e}
Z/2)))Z/2 ∶DSpectra→DSpectra

does not preserve products, which is sufficient, since the functors (?)Z/2,
i∗, inf {e}

Z/2 do preserve products. In effect, it is well known that we have

a cofibration sequence

BZ/2+ ∧X → (i∗(i♯(inf {e}
Z/2)))

Z/2 →X,

where the third term preserves products, so it suffices to prove that the
first term does not, which is Lemma 7.

For the same reason, i∗ does not preserve compact objects (since the

functors (?)Z/2, inf {e}
Z/2 do), so i∗ does not have a right adjoint.

The right projection formula (4), for x = Z/2+, y = S, (where G = Z/2,
U is the trivial universe and V is the complete universe) would say
that

Z/2+ ∧ i∗(S) ∼ i∗(Z/2+).
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We know that the right hand side has fixed points by the Wirthmüller
isomorphism, while the left hand side does not. Therefore, (4) is false.

2.5. Inflation - the general case. By formula (1), the general case
of the inflation reduces to the case of an H-fixed universe, and change
of universes. However, it remains to resolve the question of how many
adjoints we have, and the question of a projection formula.

In the case when G = Z/2 and U is the complete universe, we have,
again, for a spectrum X, a cofibration sequence

BZ/2+ ∧X → (inf {e}
Z/2X)Z/2 →X,

thus showing that (?)Z/2 does not preserve compact objects, since

inf
{e}
Z/2 does. Therefore, the right adjoint to (?)Z/2 in this case does

not have a further right adjoint by Corollary 4. On the other hand,
this situation actually satisfies the assumptions of [1], and therefore,

we also know that the functor inf
{e}
Z/2 does not have a left adjoint.

We also know from [1] that in the case of inflation from a complete
universe to a complete universe, the right projection formula (4) is
satisfied. However, it turns out to be true in general, which is curious,
since it is false for change of universe. In effect, in the general case, the
right projection formula asserts an equivalence

(21) X ∧ (Y H) ∼ // ((infJGX) ∧ Y )H .

Since both sides are stable under desuspensions by finite subrepresen-
tations of U H , it suffices to consider the case when X is a J-space.
In that case, however, (when applied to a cell spectrum Y ), the V ’th
space of both sides for V H-fixed is the colimit of ΩW (X ∧YV +W ) over
finite subrepresentations W of U .

2.6. Geometric fixed points. As already remarked, the most univer-
sal case is the case of a complete universe. In that case, the assumptions
of [1] are satisfied, so we know that there are two right adjoints, and
the right projection formula (4) holds. This turns out to be the case in
general. In fact, the geometric fixed point functor coincides with the
fixed point functor in the case of an H-fixed universe, so this case also
generalizes the rightmost three functors of the chain of 5 adjoints for
inflation in the case when U is H-fixed. By the same arguments, then,
one shows that in general, the right adjoint to ΦH is

(22) Ẽ[H] ∧ infJG(?),
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which, in turn, has the right adjoint (F (Ẽ[H], ?)H . It is easy to see
that in the case of a complete universe with G = Z/2, H = {e}, (22) does

not preserve compact objects, since ẼZ/2 is not compact (as EZ/2+
is not). Therefore, the second right adjoint to ΦZ/2 does not have an
additional right adjoint in this case, and by [1], ΦZ/2 does not have a
left adjoint. Thus, in this case, we have the “3-scenario” of [1].

In the case of a complete G-universe U , we have the right projection
formula by [1], but in fact, again, it is true in general: it asserts an
equivalence (for cell spectra) of the form

X ∧ Ẽ[H] ∧ infGJ Y
∼ // ΦHX ∧ Ẽ[H] ∧ Y,

which holds for the same reason as in the case of an H-fixed universe.

3. Appendix

We record here some auxilliary results, which we consider known,
but for which we could not find an easy reference.

Lemma 7. Let K denote (non-equvariant complex) periodic K-theory.
Then the canonical morphism

(23) BZ/2+ ∧ (∏
N
K) ≁ //∏

N
(BZ/2+ ∧K)

is not an equivalence.

Proof. We are trying to show that in a particular case, Borel homology
does not preserve products. Since Borel cohomology preserves prod-
ucts, it suffices to work with Tate cohomology instead. The Borel
cohomology of K has coefficients (in dimension 0) Z ⊕ Z2 where the
Euler class maps the first summand to the second, so the Tate coho-
mology is Q2. Similarly, the Tate cohomology of a countable product
of copies of K is 2−1(∏

N
Z2), the canonical map of which into ∏

N
Q2 is

not an isomorphism (because of non-uniformity of denominators). ◻

Lemma 8. Let Y be a T1-space and suppose we have an indexing set
I, and for each F ⊂⊂ I (meaning a finite subset) a subspace YF ⊆ Y
(with the induced topology) such that

(1) Y = ⋃
F⊂⊂I

YF (with the colimit topology)

(2) YF ∩ YG = YF∩G for F,G ⊂⊂ I
(3) F ⊆ G⇒ YF ⊆ YG.
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Suppose f ∶ X → Y be a continuous map where X is compact. Then
there exists F ⊂⊂ I such that f(X) ⊆ YF .

Proof. Suppose we have sets

∅ = F0 ⊂ F1 ⊂ F2 ⊂ ⋅ ⋅ ⋅ ⊂⊂ I
and

yn ∈ (YFn ∩ f(X)) ∖ YFn−1

for n = 1,2, . . . .
We claim that

(24)
IfG ⊂⊂ I and S is an infinite subset of {0,1,2, . . .},
then {ys ∣ s ∈ S} ⊈ YG.

To see this, select such a G and S. Then there is a natural number n
such that

G ∩ (⋃
n
Fn) = G ∩ Fn.

Assuming that yn+1 ∈ YG, we would have

yn+1 ∈ YG ∩ YFn+1 = YG∩Fn+1 = YG∩Fn ⊆ YFn ,

which is a contradiction.
Now by (24) and assumption (1), for every n, the set

Tn = {yn, yn+1, . . .} ⊆ Y
is closed in Y , and hence

f−1(T1) ⊇ f−1(T2) ⊇ . . .
are non-empty closed subsets of X, whereas

⋂ f−1(Tn) = f−1(⋂Tn) = f−1(∅) = ∅,
contradicting the compactness of X. ◻

Corollary 9. Suspension spectra of orbits are compact objects in the
category DG-U -spectra for any compact Lie group G and any universe
U .

Proof. Consider G-U -cell spectra Zi, i ∈ I. The assumptions of Lemma
8 are satisfied first for a wedge of based spaces, and hence are also
satisfied for

Y = colim
W

ΩW (⋁
i∈I

(Zi)V +W ),

YF = colim
W

ΩW (⋁
i∈F

(Zi)V +W ).

◻
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