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Abstract. We compute the equivariant (stable) complex cobor-
dism ring (MUG)∗ for finite abelian groups G.

1. Introduction

The calculation of the non-equivariant cobordism ring due to Milnor
and Quillen [9, 10] was one of the great successes of algebraic topol-
ogy. The G-equivariant complex cobordism ring for G a compact Lie
group can be defined analogously to the non-equivariant case. It was
noticed almost immediately however (e.g. [14]) that because of fail-
ure of equivariant transversality, equivariant cobordism groups are not
the homotopy groups of an RO(G)-graded generalized (co)homology
theory and hence are extremely difficult to calculate (essentially, sus-
pension spectra arise, so this is comparable in difficulty to, say, the
stable homotopy groups of spheres). Because of this, tom Dieck [13]
introduced the stable equivariant complex cobordism ring), which is
the universal object remedying this situation. It has both a geometric
characterization (Broöcker and Hook [1]) and a characterization as the
coefficient ring of the G-equivariant Thom spectrum.

Perhaps surprisingly, the problem of calculating explicitly tom Dieck’s
stable equivariant cobordism ring (MUG)∗ has remained open for the
last 40 years, despite some great progress (e.g. [3, 4, 5]). To date, there
were only two complete calculations known: The case of a p-primary
cyclic group was done by the second author [6]. This computation
comes in the form of a pullback diagram, but a recipe is given in [6] for
recovering explicitly individual elements of the cobordism ring from the
diagram. This method was used by Strickland [12] to give, by purely
algebraic methods, a presentation of the Z/2-equivariant stable cobor-
dism ring for in terms of commutative ring generators and defining
relations.
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The other known computation is due to Dev Sinha [11]. His result is
a beautiful presentation of the MU∗-algebra (MUS1)∗ in terms of gen-
erators and defining relations. This computation, in fact, has the ad-
ditional benefit that it gives explicit algebra generators of (MU(S1)n)∗,
and via a surprising short exact sequence, also generators of (MUG)∗
for any finite abelian group G. Sinha’s approach uses Comezana’s the-
orem [2] that (MUG)∗ for a compact Lie group is a free MU∗-module.
This is used to pick splittings of restriction maps. Comezana’s proof
is highly non-constructive, and Sinha’s generators are therefore, neces-
sarily, non-explicit (from the point of view of [6, 12], it is, for example,
not even at all obvious how to write down explicit free generators of
(MUZ/2)∗ as an MU∗-module). What is remarkable about the main
theorem of [11] about (MUS1)∗ is that changing generatos within the
choices allowed leads to an isomorphism of ring with relations of the
same form.

The main result of the present note is an explicit calculation of
(MUG)∗ for a finite abelian group G. While the meaning of the words
“explicit calculation” is debatable in the case of a complicated ring
such as (MUG)∗, the answer we give here is purely algebraic, described
in terms of concrete ring-theoretic constructions. In fact, the form in
which the result appears is a direct generalization of [6], with the pull-
back replaced by a more complicated limit diagram. Similar comments
as in [6] regarding extracting specific elements apply to the present
case, and the method of Strickland [12] can therefore in principle also
be applied to our present situation.

To state the result, we must recall certain basic concepts of equivari-
ant homotopy theory ([7]). Recall that a family F of subgroups of a
finite group is a system closed under subgroups and conjugation (the
latter being vacuous in the abelian case). The classifying space of a
family F is a G-CW complex EF which satisfies

EFH '
{
∗ if H ∈ F
∅ else.

Recall also the homotopy cofiber sequence

EF+ → S0 → ẼF
where the subscript + means the inclusion of a disjoint base point.
We will mostly be interested in two kinds of families associated with
a subgroup H ⊆ G, namely the family F(H) of subgroups contained
in H and the family F [H] of subgroups not containing H. Instead of
EF(H), one usually writes EG/H.
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Let G be a finite abelian group. Denote by P (G) the poset of all non-
empty sets S of subgroups of G which are totally ordered by inclusion:

(1) S = {H1 ( H2 ( ... ( Hk},

with ordering given by inclusion: S ≤ T if and only if S ⊆ T .
Let X be a G-equivariant spectrum (in this note, we only consider

G-equivariant spectra indexed over a complete universe - see [7]). Then
define a functor

Γ = ΓG,X : P (G)→ G-spectra

given by
(2)
Γ(S) =

F (EG/Hk+, EF̃ [Hk] ∧ F (EG/Hk−1+, ... ∧ F (EG/H1+, EF̃ [H1] ∧X)...))

where S is as in (1). Note that there is a canonical and natural mor-
phism of G-spectra

(3) Y → F (EG/H+, ẼF [H] ∧ Y ),

and the effect of Γ on arrows is defined by iterating these maps. By
iterating (3), there is also a canonical natural transformation

(4) ConstX → Γ

where ConstX is the constant functor on P (G) with value X In the
next section, we shall calculate the effect of the functor Γ on coefficients
explicitly in the case X = MUG. This is relatively routine, although
the statement is technical. Our main result is the following:

Theorem 1. For X = MUG, applying the coefficient (homotopy groups)
functor to (4) induces an isomorphism

(5) MUG∗
∼= // lim

←
Γ(S)∗.

It is worth noting that in taking the limit on the right hand side
(5), it suffices to take the limit over the restriction of the functor Γ∗
to the partially ordered subset P ′(G) of P (G) consisting of sets S of
cardinality ≤ 2, as this gives the same limit. In fact, an argument
based on transitivity of limits shows that we get the same limit when
we restrict even further to the subset P ′′(G) consisting of sets S which
have either cardinality 1 or consist of two groups

H1 ( H2
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for which there does not exist a group K which would satisfy

H1 ( K ( H2.

Note that since we are dealing with an inverse limit, the validity of the
isomorphism in the category of abelian groups automatically implies
its validity in the category of commutative rings.

2. Computation of the functor (ΓG,MU)∗

This is essentially a gathering of known facts. First of all, recall that
by tom Dieck’s result [13, 6], [5], Corollary 10.4, we have

(6)
(EF̃ [H1] ∧MU)H1

∗ =

MU∗[u
±1
L , u

(i)
L |i > 0, L ∈ H∗1 ]

where A∗ = Hom(A, S1) and A = A r {0}. For the purposes of this

note we don’t really nead to know what the classes u
(i)
L are, (we set

u
(0)
L = uL), the only fact we need to know is that under the canonical

map of (6) into

(ẼF [H1] ∧ F (EG+,MU))H1
∗ = MU∗[[uL|L ∈ H∗1 ]]/(uL +F uM = uLM),

we have

(7) u
(i)
L 7→ The coefficient of xi in x+F uL

(see [6]). Now assuming inductively that we have calculated the coef-
ficients of the Hj−1-spectrum

(8) MUS,j−1 = ( ˜EF [Hj−1] ∧ F (EG/Hj−2, ...ẼF [H1] ∧MU)...))Hj−1 ,

the Hj/Hj−1-spectrum (8) is split only if j = 2, but in either case the
Borel cohomology spectral sequence associated with

(9) F (EG/Hj−1+,MUS,j−1)
Hj
∗

collapses by evenness, and hence we know (9) has an associated graded
object isomorphic to

(10) (MUS,j−1)
Hj−1
∗ BHj/Hj−1.

On the other hand, the coefficient ring is generated by Euler classes,
so the precise relations in the ring (9) are not difficult to compute from
the formal group law. Furthermore,

(11) (ẼF [Hj] ∧ F (EG/Hj−1+,MUS,j−1))
Hj
∗
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is obtained from (9) by inverting the Euler classes uL of irreducible
complex representations L of Hj which are non-trivial on Hj.

Explicitly, let Rj, j = 0, ..., k be a set of G/Hj-representatives of
the irreducible non-trivial complex Hj+1/Hj-representations (we set
H0 = {e}, Hk+1 = G). Next, consider the ring

AG,S = AS =

MU∗[uL, u
−1
M , u

(i)
N |i > 0,

L ∈ R0 q ...qRk,M ∈ R0 q ...qRk−1, N ∈ R0]

On this ring, define the following topology TG,S = TS: a sequence of
monomials

at
∏

L∈R1q...qRk

u
n(L,G)
L ∈ AS

with

0 6= at ∈MU∗[u
±1
L , u

(i)
L |i > 0, L ∈ R0]

converges to 0 if and only if there exists a j = 1, ..., k such that

n(L, t) is eventually constant in t for L ∈ Ri, i > j

and
n(L, t)

t
// +∞

for L ∈ Rj. A sequence of elements pt ∈ AS converges to 0 if and
only if choosing arbitrary non-zero monomial summands mt of pt, the
sequence of monomials mt converges to 0 in t. A set T ⊂ AS is closed
if and only if the limit of every sequence in T convergent in AS is in T .

Theorem 2. Γ(S)∗ is the quotient of the completion

(AS)∧TS

by the (closed) ideal IS = IG,S generated by the relations

uL1 +F uL2 =

(
m∑
i=1

)
F

uMi

whenever

L1L2
∼=

m∏
i=1

Mi

and there exists a j = 1, ..., k such that

L1, L2 ∈ Rj,

Mi ∈ Rj q ...qRk.
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Proof: An induction on |G|, k using the method described in the be-
ginning of this section. For |G| = 1 or k = 1 the statement is obvious.
For a given k > 1, first assume Hk 6= G.Then filter the ring

(AG,S)∧TG,S
/IG,S

by powers of the ideal

(uL|L ∈ Rk).

By definition, the associated graded ring is

((AHk,S)∧THk,S
/IHk,S)[[uL|L ∈ Rk]]/(uL +F uM = uLM)

(with the understanding, of course, that u0 = 0) which, by the induc-
tion hypothesis, coincides with (10). The filtrations also coincides with
the Borel cohomology spectral sequence, so the statements follows from
that spectral sequence. (The Borel cohomology spectral sequence for
complex cobordism in the abelian case is quite standard, see e.g. [4].)

When Hk = G, we have, by definition,

(AG,S)∧TG,S
/IG,S = (AG.Sr{G})

∧
TG,Sr{G}

/IG,Sr{G}[u
−1
L |L ∈ Rk],

which is ΓG(S)∗ by the induction hypothesis and (6). �

It remains to compute the effect of Γ on arrows (i.e. inclusions of
S), but this is given simply by

uL 7→ uL

(i.e by these classes being sent to classes of the same name) and by
(7), where applicable. Of course, our description of Γ(S)∗ depended
on choices of G/Hj-representatives of irreducible complex Hj+1/Hj-
representations, so we need to specify how the description changes when
we change representatives. For j > 1, replacing L by

L′ = L
m∏
i=1

Mi

with Mi ∈ Rj+1 q ...qRk, we may simply use the relation

uL′ = uL +F uM1 +F ...+F uMm .

For j = 1, we use the relation

(uL′ +F x) = uL +F (uM1 +F ...+F uMm +F x)

and compare the coefficients at xi, where the contents of the parenthesis
on the right hand side are expanded as a series in x.
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3. Proof of the main theorem

First note that the natural transformation (4) gives a canonical mor-
phism of G-spectra

(12) ηX : X → holim
←

Γ.

We first prove

Theorem 3. The morphism ηX is an equivalence of G-spectra for any
G-spectrum X.

Proof: An induction on |G|. The statement is clearly true for |G| = 1,
so assume it is true with G replaced by G′, |G′| < |G|. Denote by P̌ (G)
the partially ordered subset consisting of all sets S ∈ P (G) such that

G /∈ S.
Denote by D the diagram

(13)

ẼF [G] ∧X

��

holim
←

Γ|P̌ (G)
// ẼF [G] ∧ holim

←
Γ|P̌ (G).

Then transitivity of homotopy limits gives an equivalence

(14) holim
←

Γ→ holim
←
D.

(Note that EG/G = ∗.) Now for a subgroup H ( G, we have a
canonical inclusion P (H) ⊆ P̌ (G), and if we consider

holim
←

Γ|P (H)

as a contravariant functor on the poset Q of subgroups H ( G with
respect to inclusion, we have a canonical equivalence

(15) holim
←

(holim
←

Γ|P (H))
∼ // holim

←
Γ|P̌ (G)

where the outside homotopy limit on the left hand side of (15) is taken
over Q. (This is true with Γ replaced by any functor.) By the induction
hypothesis, however, the canonical morphism

F (EG/H+, X)→ holim
←

ΓP (H)

is an equivalence for H ( G, so (15) yields a canonical equivalence

(16) F (EF [G]+, X) = holim
←

F (EG/?+, X)|Q
∼ // holim

←
Γ|P̌ (G).
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Therefore, if we denote by E the diagram

(17)

ẼF [G] ∧X

��

F (EF [G]+, X) // ẼF [G] ∧ F (EF [G]+, X),

the canonical map

(18) holim
←
E → holim

←
D

is an equivalence, which further obviously commutes with the canonical
morphisms from X.

Note, on the other hand, however, that the canonical morphism from
X to holim

←
E is an equivalence, since E is the generalized “Tate square”

for the family F [G]. (In other words, the fiber of the canonical mor-
phism

X → ẼF [G]

maps to the fiber of the bottom row of E by the canonical equivalence

EF [G]+ ∧X → EF [G]+ ∧ F (EF [G]+, X),

which is an equivalence. �

To prove the “non-derived” statement (5) for X = MUG, we will
use induction, which will have to involve a somewhat more general
class of spectra. Concretely, by generalized MUG we mean the smallest
class of G-equivariant spectra for all G finite abelian which satisfies the
following:

(1) MUG is a generalized MUG for all G finite abelian.
(2) If R is a generalized MUG, and H ( G, then

ΦHR

are generalized MUG/H where ΦH(?) = (ẼF [H]∧?)H is the
“geometric fixed point functor” (see [7]).

(3) If R is a generalized MUG, then

F (EG+, R)

is a generalized MUG.

Proposition 4. The completion theorem [4], and the statements of
Section 7 of [5] remain valid with MUG replaced by any generalized
MUG.
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Proof: Note that generalized MUG’s are formed by starting with MUΓ

for some Γ finite abelian, and then successively applying

(19) ΦH ,

or

(20) F (EG+, ?)

for certain subquotients H,G of Γ. If only functors of the form (19) are
applied in the process, iteration is in fact unnecessary, and we obtain an
MUG-algebra R where R∗ is flat over (MUG)∗ by a result of Greenlees
([5], Corollary 10.4). Therefore, the proofs of [4] and [5], Section 7
apply verbatim with MUG replaced by R.

If, on the other hand, R is a generalized MUG in whose formation a
functor of the form (20) is used at least once, then the coefficients R∗
are known by the computation of Section 2 above. In particular, one
sees explicitly that Euler classes of representations still generate the
augmentation ideal of R∗, and the proofs [4], [5], Section 7, still apply
with MUG replaced by R. �

Proof of Theorem 1: We will prove that the statement of Theorem
1 is valid with MUG replaced by any generalized MUG, which we will
denote by R. Our proof is by induction on |G|. For |G| = 1, the
statement is obvious. For a given |G|, and {e} 6= H ⊆ G, denote by
MH the subdiagram of Γ of the form
(21)

...F (EG/H ′+, ẼF [H ′] ∧R)

��

F (EG/{e}+, ˜EF [{e}] ∧R) // ...ẼF [H ′] ∧ F (EG/{e}+, ˜EF [{e}] ∧R)

whereH ′ ranges over all subgroups ofG containingH. (Caution: notice
the dots. In other words, at the corners we have diagrams indexed
over the subset of P (G) containing only sets S in (1) with H ⊆ H1;
this is isomorphic to the poset P (G/H). Recall also that, of course,
˜EF [{e}] = S0.)
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Taking homotopy limits of the corners of (21) for a given H 6= {e},
we obtain the diagram

(22)

ẼF [H] ∧R

��

F (EG+,MU) // ẼF [H] ∧ F (EG+, R).

Taking the union of the diagrams (22) over H 6= {e} where we put the
canonical arrows between the corresponding upper right and lower right
corners induced by inclusions of the subgroups H, is then equivalent to
the homotopy limit of the diagram formed by taking the union of the
diagrams MH , which is isomorphic to the diagram Γ. On the other
hand, taking homotopy limits over H 6= {e} in the upper and lower
right corners of (22), we obtain the “ordinary” Tate square for R (as
considered for example in [5]):

(23)

ẼG ∧R

��

F (EG+, R) // ẼG ∧ F (EG+, R).

Now by the induction hypothesis, the coefficients of the upper right
and lower right corners of (22) are equal to the inverse limits of the
coefficient functor applied to the corresponding parts of the diagram
(21). On the other hand, consider the spectral sequences corresponding
to the homotopy limits of the upper right and lower right corners (22).
By the first sentence of the proof of Lemma 7.2 of Greenlees [5] (which
remains valid with MU replaced by R by Proposition 4 above), the
vertical arrow of (22) induces an isomorphism in filtration degrees ≥ 1
of the E2-terms of those spectral sequences, and hence these terms may
be ignored, and we see that the corners of the (ordinary) Tate diagram
for R are obtained as non-derived limits of the corresponding parts of
the diagram Γ.

Finally, the homotopy limit of the Tate square can only have a de-
rived term in filtration degree 1, but such a term would create odd
degree elements in (MUG)∗, which do not exist by [3, 8]. �
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