ALGEBRAIC VECTOR BUNDLES OVER COMPLEMENTS OF HYPERPLANE ARRANGEMENTS IN AFFINE SPACES OVER A FIELD

IGOR KRIZ

In questions related to algebraic models of chiral conformal field theory [1], the author encountered the following question: Is every algebraic vector bundle over the ordered configuration space of n points in an affine line over a field trivial? In the present note, we answer the question in the affirmative. In fact, we prove a much more general statement, namely that over any complement of a (finite) arrangement of hyperplanes in an affine space over a field, any algebraic vector bundle is trivial. We use a method of R. Swan [3], which, as mentioned in [3], is originally due to M.P.Murthy. The proof (which is completely elementary) was inspired by conversations with Mike Hopkins on \mathbb{A}^1 -homotopy theory.

Theorem 1. Let K be a field, n = 1, 2, ... a natural number and let $L_1, ..., L_m$ be nonzero polynomials of degree ≤ 1 in variables $x_1, ..., x_n$. Then every finitely generated projective module over

$$A = K[x_1, \dots, x_n][L_1^{-1}, \dots, L_m^{-1}]$$

is free. In other words, A is a Quillen-Suslin ring.

Proof. Induction on

$$(1) (n,m)$$

ordered lexicographically from the left (meaning that the leftmost entry has the greatest weight). For n = 0, the statement is obvious. Thus, let us assume n > 1. We distinguish two cases:

Case 1: m > 0. Since clearly any constant polynomials L_i can be dropped, without loss of generality, we may assume that x_n has a non-zero coefficient in L_m , and by linear substitution, we may then assume that

$$L_m = x_n$$
.

Let M be a finitely generated projective A-modules. Then the statement is true when A is replaced by the ring

$$\widetilde{A} = K(x_n)[x_1, \dots, x_{n-1}][L_1^{-1}, \dots, L_{m-1}^{-1}]$$

Partially supported by NSF grant DMS 1102614.

by the induction hypothesis applied to (1) replaced by

$$(n-1, m-1)$$

and with K replaced by $K(x_n)$. Thus, $M \otimes_A \widetilde{A}$ is a free \widetilde{A} -module. By the limit argument, there exists a monic polynomial f(x) in one variable x with coefficients in K such that $M[f(x_n^{-1})^{-1}]$ is a free module over

(2)
$$A[f(x_n^{-1})^{-1}].$$

Let

$$f(x_n^{-1}) = x_n^{-N} + c_{N-1}x_n^{-N+1} + \dots + c_0x_n^0, \ c_i \in K.$$

Since $x_n, x_n^{-1} \in A$, (2) is equal to

$$A[g(x_n)^{-1}]$$

where

$$g(x_n) = x_n^N f(x_n^{-1}) = 1 + c_{N-1}x_n + \dots + c_0x_n^N.$$

Clearly, $V(g(x_n) = 0)$ is disjoint from the locus $V(x_n = 0)$ in Spec(B) where V(E) denotes the locus of the equation E and

$$B = K[x_1, \dots, x_n][L_1, \dots, L_{m-1}].$$

Now thinking of M as a vector bundle over

$$Spec(A) = Spec(B) \setminus V(x_n = 0),$$

the bundle is trivial over

$$Spec(B) \setminus (V(x_n = 0) \coprod V(g(x_n) = 0))$$

and thus may be patched with a trivial bundle over

$$Spec(B) \setminus V(g(x_k) = 0)$$

to define a bundle \overline{M} over Spec(B). By the induction hypothesis, however, our statement is true with A replaced by B (by replacing (n,m) with (n,m-1)). Thus, \overline{M} is a trivial bundle, and hence so is M.

Case 2: m = 0. In this case, the statement follows from the Quillen-Suslin theorem which solved the Serre conjecture [2].

References

- [1] I.Kriz, Y.Xiu: Tree algebras: An algebraic axiomatization of intertwining vertex operators, $Archivum\ Math.\ 48\ (2012)\ 353-370$
- [2] D.Quillen: Projective modules over polynomial rings, Invent. Math. 36 (1976), 167 - 171
- [3] R.G.Swan: Projective modules over Laurent polynomial rings, Trans. AMS $237\ (1978)\ 111\text{-}120$