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1. introduction

In this note, we describe a new a candidate for an elliptic cohomology-type spec-
trum based on conformal field theory. The new model is an improvement of the
constructions of [4]. This model relies on a new infinite loop space machine deviced
by Gomez [3]. The present model is interesting because it is, in some sense, a com-
promise between the models proposed in [4] and [6].

To compare the definition of a spectrum E in this note with the construction of [4],
one major difference is the use of the infinite loop space machine [3]. In [4], no infinite
loop space machine was in sight, and because of that, an “Ersatz” construction of
taking the suspension spectrum and inverting a suitable element was considered. Also,
we relate the notions involved to more familiar mathematical constructions (conformal
field theories on a given SPCMC, instead of just defining stringy bundles ad hoc).
Another major difference is that in the present definition, we give up the “manifest
modularity” feature, i.e. we do not consider translation-equivariant stringy bundles
over an elliptic curve E, but only stringy bundles over C with compact support.
It should be pointed out that there exists a version of our construction which does
reproduce the “manifestly modular” approach, although there are certain subtleties
involving equivariant stacks, namely, one must vary the sites involved to reproduce
the continuity of the action.

The reason we do not insist on manifest modularity in our definition of choice is
that all the calculational observations made in [4] can, in fact, be reproduced in the
new setting. The three features reproduced are the character map

(1) E → K[[q]],

a model of the 4-dimensional characteristic integral cohomology class

(2) BE8 → K(Z, 4),

and a map

(3) B̃E8 → E

where B̃E8 is the homotopy fiber of the map (2). The calculational evidence found
in [4] can be summarized as follows: one might naively want to simply define our
spectrum by applying the machine [3] to the category of CFT’s with modular functor
over C(C2) fibered over the category of modular functors over C(C2). Indeed, this
allows a natural map (1) and also (3), but one finds that the image of such map
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on homotopy does not consist of modular forms. In particular, since we may work
rationally, we can consider the images of duals of the primitive elements of H∗BE8,
which are rational homotopy classes of BE8. One finds that the image of the 4-
dimensional homotopy class is not a modular form, whereas the images of the higher
dimensional classes are modular forms.

This suggests that there should be a class

(4) BAut(H) → K(Z, 4),

where Aut(H) is the automorphism group of a CFT (H) and the homotopy classes
which are modular forms should be in its fiber. Unfortunately, we know of no con-
struction of a natural class of the form (4), although it is interesting to note that Stolz
and Teichner [6], Section 5.4, arrive at a geometric model of the class (2) by using
structures obtaining by their conjectured extension of CFT. This is quite provocative,
and we think there must be a connection. In our setting, however, the only way such
class seems to appear is by considering “bundles of CFT’s” over a 2-dimensional com-
plex manifold X (such as E or C with compact supports). The “bundles of CFT’s” in
addition means CFT’s on some SPCMC of worldsheets embedded in X, which leads
to the setup we consider here.

2. The definition

Let us recall briefly what a SPCMC is. It is a concept which axiomatizes in the
most complete way known to us the structure present on the set of all worldsheets, i.e.
compact Riemann surfaces with parametrized boundary. (So as not to worry about
set theory, all of the objects are bounded in cardinality, so let they all be subsets of
some fixed universe which is a set.)

‘S’ stands for ‘stack’, and ‘P’ for ‘pseudo’, so we should first consider CMC’s,
which stands for ‘commutative monoid with cancellation’. With some terminological
variations and errors, this is defined in [4, 1], with the corrections discussed in [2]. A
commutative monoid with cancellation consists of an underlying commutative monoid
I, and for i, j ∈ I, a set Xi,j. The operations are

(5) 0 ∈ X0,0,

(6) + : Xi,j ×Xk,` → Xi+k,j+`,

(7) O : Xi+k,j+k → Xi,j.

There is a transitivity axiom for (7), commutativity, associativity and unitality axioms
for (5), (6), and a distributivity axiom relating (6), (7) (see [2]).

Let us now discuss ‘pseudo’. In the example we want to consider, I would be
the set of all finite sets of copies of S1 (equivalently, just finite sets), and Xs,t the
set of all worldsheets with a bijection from the set of inbound (resp. outbound)
boundary components to s (resp. t). We see clearly that this cannot be a CMC
under disjoint union and gluing, since, as well known, for example finite sets cannot
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form a commutative monoid. We note however that I forms a groupoid, and X can
be considered as a strict functor from I × I to groupoids. Moreover, the operations
+ on I can be defined as functorial, and (5), (6), (7) can be defined as functorial and
strictly natural in I. For each axiom (relation among the operation), we moreover
get a coherence isomorphism in the groupoid involved. These coherence isomorphisms
are subject to coherence diagrams. The correct rules for creating coherence diagrams
are somewhat tricky (as an incorrect choice might either miss some diagrams, or force
the structure to be strict). For I, the correct choice of diagrams are the ones for a
symmetrical monoidal category: philosophically, words in a finite set of variables can
be formed using the operations. Every variable must be used exactly once. Then
one word w1 may be converted to another word w2 by repeatedly using the relations
(with substitutions allowed). When w1 can be converted to w2 in two different ways,
a coherence diagram arises.

On the level of X, we may similarly form words out of the operations (5), (6), (7)
and variables to be chosen from the X’s. Note however that we also have another set
of variables involved, to be chosen from I, and the subscripts of the X’s from which
the X-variables are taken must be pairs of words in the I-variables made using the
operations in I, in order for our abstract word in the X-variables and operations to
be defined. Our rule is that each of the X-variables (but not the I-variables) must
be used exactly once in the word. Once this is established, the situation is similar
as for I: we may process one word in the X-variables to another using the relations
(axioms), and when this can be done in more than one way, we obtain a coherence
diagram.

Pseudo-structure of this kind have pseudo limits (as shown in [1]), so they can be
used to make stacks. A stack on a site with values in a 2-category with pseudo limits
is defined by assigning to each object of the site functorially an object of sections with
values in the 2-category with the requirement that Grothendieck covers go to pseudo
limits (the usual cocycle condition arises, since the pseudo-limits are only defined up
to equivalence). The site considered in this note will usually be finite-dimensional
complex manifolds and open covers.

We consider the SPCMC of worldsheets C over the stack of (finite-dimensional)
complex manifolds. For a Riemann surface X, we have an SPCMC CX . The under-
lying stack of commutative monoids has sections over M equal to covering spaces M̃
of M together with real-analytic maps

(8) M̃ × S1 → X

which are injective on fibers. Morphisms are deck transformations which preserve the
map (8). The objects of the SPCMC itself are bundles

(9) ξ : E →M

together with an additional map

(10) φ : E → X
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where φ is injective on fibers and the fibers of (9) are Riemann surfaces with given
bundles of inbound and outbound boundary components similarly as in [4]. There is
an obvious forgetful map CX → C.

For modular functors, we will consider the SPCMC C(C2) where C2 denotes the
symmetric bimonoidal category of finite-dimensional vector spaces over C and iso-
morphisms, and the operations of direct sum and tensor product. This is defined in
[5] (where one defines, more generally, C(M) for any finite dimensional free pseudo
module over C2) . In the special case we are considering here, the underlying pseudo
commutative monoid of C(C2) is the category of finite sets. The category of sections
over a point over a pair of sets S, T in C2 and the operations are the identity.

It will be to our advantage to consider this as a topological stack, which means
that the morphisms in a category of sections over a given M are topologized by the
topology on morphisms of vector spaces.

For CFT’s, it will be to our advantage to vary the Hilbert space. This means that
we will consider the SPCMC C ′(C2) whose sections over M over sets s, t are given by
a holomorphic (finite-dimensional) vector bundles V on M , a Hilbert space H, and a
trace-class map

(11) V → ⊗̂
s

H∗⊗̂ ⊗̂
t

H.

Morphisms of CFT’s which we will consider will fix modular functor, so morphisms
from (V,H) to (V,K) consist of isomorphisms H ∼= K which intertwine the map (11)
in the obvious way. These morphisms are topologized in the obvious way (using the
norm topology on Hilbert space isomorphisms).

In this paper, we will only consider modular functors with one label (over C2),
so the words “with one label” will be omitted from our terminology. By a modular
functor (resp. CFT) on CX we mean a morphism of SPCMC’s CX → C(C2) (resp.
CX → C ′(C2)) which on the underlying commutative monoid are given by forgetting
the map (8). The corresponding notions for C are defined by considering X = ∗. For
modular functors M on C, we add the requirement that for the unit disks D+,D−

MD± be a complex line with a distinguished non-zero element ε±, and that morphisms
preserve this element. For CFT, we add the requirement that the map (11) (which
we denote by U) always be injective.

Lemma 1. For a C2-modular functor M over CX , and for any worldsheet Σ, MΣ is
a complex line. Further, if X = ∗, M has no automorphisms except the identity.

Proof: For 1-dimensionality, simply note that by the gluing axiom for modular
functors, and our assumptions about D±, MΣ is 1-dimensional for any pair of pants,
and hence again for every Σ by gluing. For automorphisms, by our assumption, an
automorphism is Id on MP1 , and hence again on any disk, and hence any pair of
pants, and hence any worldsheet. �
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Remark: If we relax our assumptions onD±, there will be non-trivial automorphisms
of modular functors. For example, if we only assume that the automorphism is Id on
MD+ , then for any non-zero complex number λ, there is an automorphism which on
Σ is λχ−∂++∂− where Σ has Euler characteristic χ, and ∂+ (resp. ∂−) outbound (resp.
inbound) boundary components.

Now we make the categories of modular functors and CFT’s into topological cat-
egories. (The category of C-modular functors is discrete by Lemma 1.) Note that
morphisms are specified by giving an element of a certain topological space on every
object of CX . More concretely, for sections over an X we have the space of iso-
morphisms of the appropriate vector bundles and an isomorphism of the appropriate
Hilbert spaces. Call this space GX . We can also consider GY for a subspace Y of X.
Now let the basis of the set of open sets of morphisms be the inverse images of GY

for all compact subsets of all finite-dimensional manifolds X.

The topological category A of CFT’s C then maps into the category B of CFT’s
CC over modular functors pulled back from C (as noted, morphisms take leave the
modular functor fixed). The map is given by taking the constant CFT. Now both A
and B are fibered over the discrete category MF of modular functors over C. Each
of these fibered categories can be taken as input into the machine of Gomez [3]. The
fiber of the resulting E∞ ring spectra is one version of our construction.

It is also possible to consider a modification of these concepts which is closer to the
language of [4] and makes it easier to construct examples. At this point, we do not
have a proof that both versions of the definition are equivalent. The modification is to
define a special modular functor (resp. CFT) as the following set of data: A modular
functor (resp. CFT) on C, a finite set S ⊂ C (called the set of punctures), and a
modular functor (resp. CFT) on the sub-SPCMC of CC where on the commutative
monoid we restrict to objects whose image under (8) is disjoint with S, and on the 2-
level we restrict to objects whose image under (10) has boundary disjoint with S. We
further require that for objects on the sub-SPCMC where on the 2-level we restrict
to worldsheets such that the image of (10) is disjoint with S, the data is given by
pulling back the modular functor (resp. CFT) structure on C. We also identify such
special modular functor or CFT with one obtained by adding any additional finite
number of punctures, and consider the resulting special modular functor resp. CFT
equal. Topology for the category of special modular functors resp. CFT’s is defined
in the same way as for general modular functors resp. CFT’s over CC.

It is also helpful to further enlarge the category of CFT’s by enlarging the set of
morphisms. We will call this special CFT’s on CE with weak convergence. In this case,
we require for a morphism only that to each analytic Jordan curve disjoint from the
punctures, we are given a weak isomorphism of Hilbert spaces, which is an injective
map

(12) ψ : H → K̂
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where the target is the completion of K with respect to the C-CFT weights, and we
assume that there are well defined trace class maps

(13) U(Ar)ψ : H → K

where Ar is the standard annulus 0 < |r|| < 1, and (12) is the weight space-wise
limit of (13) as r → 1. It is easy to show that such morphisms have well defined
composition.

Our objective is to plug in these definitions to the infinite loop space machine of
[3]. The key point for doing that is the following

Lemma 2. Let H1, H2 be two CFT’s on the same SPCMC C or CX with the same
modular functor over C(C2). Then there is a natural CFT structure on H1 ⊕H2.

Proof: Given an object X of the source SPCMC over a pair of the underlying
pseudocommutative monoid which forgets to a pair of sets s, t which represents a
connected worldsheet, if the value of the corresponding modular functor is MX , the
two CFT’s produce maps

(14) Ui(X) : MX →
⊗̂
s

H∗
i ⊗̂

⊗̂
t

Hi.

We want to produce a map

(15) U(X) : MX →
⊗̂
s

(H1 ⊕H2)
∗⊗̂ ⊗̂

t

(H1 ⊕H2).

To this end, we note that since the dual (?)∗ commutes with ⊕, there are natural
maps φi from the right hand side of (14) to the right hand side of (15). We take the
sum of these maps.

A general object X is a direct sum of finitely many objects Xj, j ∈ J , each
representing a connected worldsheet. We let

(16) U(X) =
⊗
j

U(Xj).

Since this definition obviously satisfies U(X q Y ) = U(X)⊗ U(Y ), we need to prove
that it preserves gluing. This means that when i ∈ s and i′ ∈ t, and X̌ is obtained
from X by gluing i to i′, we need to show that

(17) U(X̌) = tr(U(X)).

To this end, note that by definition, U(X) is the sum of products

(18) ⊗Uk(j)(Xj)
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for some function k : J → {1, 2}. By the definition of trace, the trace of (18) can be
nonzero only if

(19) k(j) = k(j′)

where i is a boundary component of Xj and i′ is a boundary component of Xj′ . If
j = j′, (19) is automatic, the number of connected components does not change, and
by definition (17) then follows simply from the additivity of trace. If j 6= j′, then
the number of connected components of X̌ is one less than the number of connected
components of X, but the contribution of (18) can be non-zero only when (19), so
once again, (17) follows from the additivity of the trace. �

Note that there is a canonical embedding functor Φ from the category A of CFT’s
over C to the category B′ whose objects are CFT’s over C and morphisms are special
morphisms of their pullbacks to CC with weak convergence (and with rigid modular
functor). Both categories A and B′ are then fibered over the discrete category MF
of modular functors, and the machine of Gomez [3] then gives rise to E∞ ring spectra
EA and EB together with a map φ of E∞ ring spectra induced by the functor Φ.

Definition 3. Let E be the E∞-ring spectrum obtained as a fiber of the map

φ : EA → EB.

3. The basic properties

We begin with (4) (or more precisely its certain weakening which we can construct).
To this end, it is helpful to extend the notion of stringy isomorphism and morphism
of modular functor by allowing “variation of label”. A special modular functor on CC
associated with a given modular functor over C is equivalent data to a finite set of
punctures S and a complex line Lx for each x ∈ S. (When Lx = C, we may delete
x from S.) Here we need to be more precise about what we mean by a “complex
line”. Specifically, we need the lines to form a topological space which is homotopy
equivalent to CP∞. Further, the space must form a strict monoid with respect to
an operation · which is to be isomorphic to the tensor product, subject to the usual
coherence diagrams (one for associativity, and one for left and right unitarity each).
This can be achieved as follows: we can take as the “space of lines” the projective
unitary group PU(H) where H is our Hilbert space. This group possesses a central
extension by C×, which we can view as a line bundle on PU(H). Let the line over g
be Lg. Then define

Lg · Lh := Lgh.

Actually, PU(H) is not a complex manifold, so it is more convenient for us to replace
it by its “complexification”, the space P ′GL(H) of weakly convergent dense injective
maps (in the above sense, i.e. after composing the result with UAr for an annulus
Ar), which also have a dense injective inverse. The topology is above: for an analytic
Jordan curve c bounding a holomorphic image of D and not containing an element
of S, we let Lc be the tensor product of (Lx)

i for all x ∈ S where i is the index of
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c with respect to x. The topology is by convergence on compact subsets of analytic
Jordan curves.

We now see clearly that the space S of special modular functors on CC is homotopy
equivalent to K(Z, 4). Further, we have a group of modular isomorphisms acting on
S which consists of the same amount of data, namely a finite set of punctures S and a
complex line Lx for each x ∈ S. The topological abelian group acts by tensor product
of lines. Because of this, we will denote the topological abelian group also by S, and
interpret its action on special modular functors as S acting on itself by translation.

We can now consider the space C of special CFT’s over CC with modular functors
allowing variation of labels. The objects consist of an element of S, a Hilbert space
H, a CFT (M,U) over C, and for a worldsheet Σ embedded into C with boundary
disjoint from the punctures, a trace map with trace class image

(20) MΣ ⊗
⊗
c

Lc →
⊗
c

H(∗).

Here c are the boundary components of Σ, and H(∗) means H∗ or H depending on
whether c is inbound or outbound. We further require that (20) be equal to UΣ if Σ
contains no punctures.

One essential point is that there is a canonical group of stringy isomorphisms acting
on the space C of special CFT’s with variation of labels associated with a CFT H
over C. A stringy isomorphism consists of an element of S (a modular functor with
variation of labels), and maps

(21) φc : Lc ⊗H → H

such that (21) intertwines with UΣ for any worldsheet Σ embedded in C disjoint with
S. Denote by G the monoid of weakly convergent analogues of stringy isomorphisms
(in the obvious sense).

It is worth noting that, as observed in [4], in certain cases of interest, the obvious
map

(22) Aut(H) → G

factors through a contractible group Γ. For example, when H is the level 1 CFT
associated with the group E8, then one can consider the contractible group of mero-
morphic maps C → (E8)C. The required structure is provided by the projective action
of LE8 on H. The lines are supplied by the universal central extension of LE8. In
more detail, the projective representation

(23) ψ : (LE8)C → P ′U(H)

by action of currents on the conformal field theory defines the universal central ex-
tension, so in our setup, we can assign to g ∈ LE8 the line Lψ(g) (see above). For
a meromophic map f : C → (E8)C, consider a circle c (homothetic to the identity
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parametrization of S1) with center in one of the poles or zeroes x of f , such that all
the other poles or zeroes are in the exterior of c. Then let we take the line Lψ(g) where
g is the restriction of f to c.

So we have G acting on C mapping to S acting on itself. The fiber of this construc-
tion is a group G̃ acting on C̃, but it is easily seen to be isomorphic to the groupoid of
special CFT’s based on H, as considered in the last section. Now we have an obvious
canonical map

(24) Aut(H) → G̃.

Note that in the E8-example of the last paragraph, by our observations, the restriction
of the homomorphism (24) to E8 factors through the fiber

(25) Γ → S

which is K(Z, 3). This is the sense in which (24) can be considered, at least conjec-
turally, as a version of (4).

It should be pointed out that the image of the map (24) actually lies in the isotropic

group G̃0 of the pullback of the CFT H with respect to G̃. Nevertheless, we claim
that the inclusion

G̃0 ⊂ G̃,

since the space of CFT’s on CC without variation of modular functor with its natural
topology is actually contractible: such theory is specified by a finite set of punctures,
and for a holomorphic image of the unit disk under a map sending 0 to each puncture
x, an element u of H which, as a sum of weight components, decays faster than
exponentially (so one has for U(Ar)

−1u ∈ H for every standard annulus Ar, 0 <
||r||, 1). In any case, the space of such elements is contractible.

Getting a map (1) in our definition is almost trivial. Even if we disregard the
fibration, i.e. fiber our category of C-CFT’s only over natural numbers equal to the
central charge, for a conformal field theory H we have a map

(26) Aut(H) →
∏

GL(Vn)

where Vn is the n-weight subspace of H. This defines a functor from our category to
the category fibered over the discrete category of natural numbers, where over each
number the fiber is the category of sequences (indexed by natural numbers) of finite-
dimensional complex vector spaces. This is a morphism of the fibered symmetric
bimonoidal categories of [3]. Addition and multiplication is given by the direct sum
and graded tensor product. Passing to E∞ ring spectra gives (1).

The map (3) now follows from the example to our construction of (a weaker version
of) (4). To get to the 0 fiber, just divide by the constant map. It is worth commenting
that the rational cohomology of BE8 is

Q[α1, ..., α8]
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where the dimensions of the αi’s are twice the degrees d1, ..., d8, which are

2, 8, 12, 14, 18, 20, 24, 30.

By rational homotopy theory, some non-zero integral multiple of each αi is realized

by an element of π2di
(BE8). Clearly, we can lift to B̃E8 when i > 1. We showed in

[4] that under the map (1), α2 goes to a nonzero element of

(27) ∆/g2,

and α3 goes to a non-zero element of

(28) ∆.

We see that (27) and (28) are modular of the right weight, but (27) has a singularity.
Remarkably, the image of α1 is not modular.

It is worth commenting that the way (27) and (28) are calculated in [4] leads to the
following conjecture, which, as far as we know, is not proved in the literature: Let L
be an even unimodular lattice of dimension n and let

(29) θL(τ, u1, ..., un)

be its θ-series. Putting q = e2φiτ , (29) can be interpreted as a map

(30) (Q[u1, ..., un]
Aut(L))∨ → Q[[q]].

(By ?∨ we mean the dual.) Now compose (31) with the inclusion of the dual of the
submodule of indecomposable elements, to get a map

(31) (QQ[u1, ..., un]
Aut(L))∨ → Q[[q]].

The left hand side is further naturally graded by assigning each ui degree 1. Then
the conjecture states that the image of a homogeneous element of degree ` > 2 under
(31) is a modular form of weight

(32) `+
n

2
.

Remarkably, this fails for ` = 2! From the point of view of CFT, the second summand
of (32) corresponds to shift by central charge of the lattice CFT involved. However,
at the moment we do not know that these forms are actually realized by homotopy
classes of our spectrum E.
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