1 Homeomorphisms

Definition 1.1. (Homeomorphisms of topological spaces). Let (X, T_X) and (Y, T_Y) be topological spaces. A map $f : X \to Y$ is a homeomorphism if

- f is continuous,
- f has an inverse $f^{-1} : Y \to X$, and
- f^{-1} is continuous.

The topological space (X, T_X) is said to be homeomorphic to the topological space (Y, T_Y) if there exists a homeomorphism $f : X \to Y$.

Two topological spaces are considered “the same” topological space if and only if they are homeomorphic.

In-class Exercises

1. (a) Let (X, T_X) be a topological space. Show that X is homeomorphic to itself.

 (b) Let (X, T_X) and (Y, T_Y) be topological spaces, and $f : X \to Y$ a homeomorphism. Explain why $f^{-1} : Y \to X$ is also a homeomorphism. Conclude that X is homeomorphic to Y if and only if Y is homeomorphic to X. (We simply call the spaces “homeomorphic topological spaces”).

 (c) Let $(X, T_X), (Y, T_Y),$ and (Z, T_Z) be topological spaces. Show that, if X is homeomorphic to Y, and Y is homeomorphic to Z, then X is homeomorphic to Z.

 This exercise shows that homeomorphism defines an equivalence relation on topological spaces.

2. (a) Give an example of topological spaces (X, T_X) and (Y, T_Y) and a map $f : X \to Y$ such that f is both continuous and invertible, but such that f^{-1} is not continuous.

 (b) Let (X, T_X) and (Y, T_Y) be topological spaces, and $f : X \to Y$ a map. Show that f is a homeomorphism if and only if it is a continuous, invertible, open map.

3. Determine which of the following properties are preserved by homeomorphism. In other words, suppose (X, T_X) and (Y, T_Y) are homeomorphic topological spaces. For each of the following properties P, prove or give a counterexample to the statement “X has property P if and only if Y has property P.”

 (For some properties, you will need to assume that X and Y are metric spaces.)

 (i) discrete topology (vii) complete
 (ii) indiscrete topology (viii) sequentially compact
 (iii) Hausdorff (ix) compact
 (iv) regular
 (v) number of connected components (x) bounded
 (vi) path-connected (xi) metrizable

 Properties that are preserved by homeomorphisms are called homeomorphism invariants, topological invariants, or topological properties of a topological space.
4. Use the results of Problem 3 to explain why the following pairs of spaces are not homeomorphic.
 (a) $(0, 1)$ and $[0, 1]$ (with the Euclidean metric)
 (b) \mathbb{R} with the Euclidean metric and \mathbb{R} with the cofinite topology
 (c) $(0, 2)$ and $(0, 1] \cup (2, 3)$ (with the Euclidean metric)

5. (Bonus) Let (X, T_X) and (Y, T_Y) be topological spaces, and $F : X \to Y$ a continuous function. Let G denote the graph of F (as a subspace of $X \times Y$). Prove that G is homeomorphic to X.