This talk was given at the 2012 Topology Student Workshop, held at the Georgia Institute of Technology from June 11–15, 2012.

It is primarily an expository talk on recent work done by my advisor, Benson Farb, with Tom Church and Jordan Ellenberg.

Most of the talk will be devoted to defining the terms in the title.

Background: Classical Homological Stability

\(\{ Y_n \} \) is a sequence of groups or topological spaces, with inclusions

\[\phi_n : Y_n \to Y_{n+1} \]

Definition (Homological Stability)

The sequence \(\{ Y_n \} \) is **homologically stable** (over a ring \(R \)) if for each \(k \geq 1 \), the map

\[(\phi_n)_* : H_k(Y_n ; R) \to H_k(Y_{n+1} ; R) \]

is an isomorphism for \(n >> k \).

Here is a sampling of major results from the past 50 years.

This list, and the references, are by no means comprehensive – but they should give an idea of how important, and pervasive, this phenomenon is in topology and geometry.

Examples of Homologically Stable Sequences

- (Nakaoka 1961)
 Symmetric groups \(S_n \)
- (Arnold 1968, Cohen 1972)
 Braid groups \(B_n \)
- (McDuff 1975, Segal 1979)
 Configuration spaces of open manifolds
- (Charney 1979, Maazen 1979, van der Kallen 1980)
 Linear groups, arithmetic groups (such as \(SL_n(\mathbb{Z}) \))
- (Harer 1985)
 Mapping class groups of surfaces with boundary
- (Hatcher 1995)
 Automorphisms of free groups \(\text{Aut}(F_n) \)
- (Hatcher–Vogtmann 2004)
 Outer automorphisms of free groups \(\text{Out}(F_n) \)
Generalizing Homological Stability

What can we say when $H_k(Y_n; R)$ does not stabilize?

More generally, let $\{V_n\}_n$ be a sequence of R-modules. Suppose V_n has an action by a group G_n.

Our objective: A notion of stability for $\{V_n\}_n$ that takes into account the G_n-symmetries.

In this talk:
- $G_n = S_n$, the symmetric group
- $R = \mathbb{Q}$, and V_n are finite dimensional vector spaces

We will begin with a toy example of a sequence that exhibits the sort of stability we want.

Consider the permutation representation $V_n = \mathbb{Q}^n = \langle e_1, \ldots, e_n \rangle$.

For each n, V_n decomposes into two irreducibles:

$$\mathbb{Q}^n = \left\{ a(e_1 + e_2 + \ldots + e_n) \right\} \oplus \left\{ a_1 e_1 + \ldots + a_n e_n \mid \sum a_i = 0 \right\}$$

We will use the extra structure encoded in these group actions to study the long-term behaviour of the sequence. The objective is to develop a concept of stability in terms of the G_n-symmetries.

For this talk, for simplicity, we will restrict our attention to the case when the groups G_n are the symmetric groups S_n, and $\{V_n\}_n$ is a sequence of finite-dimensional rational vector spaces.

An Example: The Permutation Representation

Example (The Permutation Representation)

Consider the permutation representation $V_n = \mathbb{Q}^n = \langle e_1, \ldots, e_n \rangle$.

For each n, V_n decomposes into two irreducibles:

$$\mathbb{Q}^n = \left\{ a(e_1 + e_2 + \ldots + e_n) \right\} \oplus \left\{ a_1 e_1 + \ldots + a_n e_n \mid \sum a_i = 0 \right\}$$

Let's highlight some properties of these permutation representations.

- The decomposition into irreducibles 'looks the same' for every n.

$$\mathbb{Q}^n = \left\{ a(e_1 + e_2 + \ldots + e_n) \right\} \oplus \left\{ a_1 e_1 + \ldots + a_n e_n \mid \sum a_i = 0 \right\}$$

- The dimension of V_n grows polynomially in n

$$\dim(V_n) = n$$

- The characters χ_n of V_n have a 'nice' global description

$$\chi_n(\sigma) = \# \text{1–cycles of } \sigma \quad \text{for all } \sigma \in S_n, \text{ for all } n.$$
Some Representation Theory

Some facts about S_n–representations over \mathbb{Q}

- Every S_n–representation decomposes uniquely as a sum of irreducibles.
- $\lambda = (6, 4, 4)$
- Irreducibles are indexed by partitions λ of n, depicted by Young diagrams.

Example (The Permutation Representation $V_n = \mathbb{Q}^n$)

- $Q^1 = V\bigcirc$
- $Q^2 = V\bigcirc \oplus V\bigcirc$
- $Q^3 = V\bigcirc \oplus V\bigcirc \oplus V\bigcirc$
- $Q^4 = V\bigcirc \oplus V\bigcirc \oplus V\bigcirc \oplus V\bigcirc$
- $Q^5 = V\bigcirc \oplus V\bigcirc \oplus V\bigcirc \oplus V\bigcirc \oplus V\bigcirc$

In order to state what it means for the decomposition into irreducible representations to ‘look the same’ for different values of n, let’s recall some representation theory of the symmetric group.

Recall that a representation of S_n is irreducible if it has no nontrivial S_n–stable subspaces. Rational representations decompose completely and uniquely into a sum of irreducibles.

There is a canonical way of constructing the irreducible representations of S_n, indexed by partitions of n. A partition of n is a list of positive integers that sum to n – we denote these by Young diagrams, with each integer encoded by the length of a row. An example is given for when $n = 15$.

Obstacle

How can we compare irreducibles for different values of n?

Solution

Two irreducibles are “the same” if only the top rows of their Young diagrams differ.

Example (The Permutation Representation $V_n = \mathbb{Q}^n$)

$Q^1 = V\bigcirc$
$Q^2 = V\bigcirc \oplus V\bigcirc$
$Q^3 = V\bigcirc \oplus V\bigcirc \oplus V\bigcirc$
$Q^4 = V\bigcirc \oplus V\bigcirc \oplus V\bigcirc \oplus V\bigcirc$
$Q^5 = V\bigcirc \oplus V\bigcirc \oplus V\bigcirc \oplus V\bigcirc \oplus V\bigcirc$

Given this classification of irreducibles S_n–representations, we’re immediately faced with an obstacle: the irreducibles are indexed by partitions of n, which, of course, depend on n. It’s not clear how to define identifications between irreducibles for different values of n.

The solution: we declare that two irreducibles (for different values of n) are “the same” if only the top row of their Young diagrams differ.

To illustrate what this means, observe the decomposition of the permutation representations into irreducibles. Once $n \geq 2$, we get the decomposition at stage $(n+1)$ by ‘adding a box’ to the top row of each of Young diagram at stage n.

This procedure of ‘adding a box to the top row’ of each irreducible is exactly the pattern that defines representation stability for a sequence of representations of the symmetric groups.

The Definition of an FI–module

Definition (Church–Ellenberg–Farb) (The Category FI)

Denote by FI the category of Finite sets with Injective maps

\[
\{1\} \hookrightarrow \{1, 2\} \hookrightarrow \{1, 2, 3\} \hookrightarrow \{1, 2, 3, 4\} \hookrightarrow \{1, 2, 3, 4, 5\} \hookrightarrow \]

S_1 S_2 S_3 S_4 S_5

We are now ready for our main definition, of an FI–module.

To begin, we define the category FI – here, FI stands for “finite sets” and “injective maps”.

We can realize this category as follows: The objects are indexed by the natural numbers – the number n corresponds to the set of numbers $\{1, 2, \ldots, n\}$. The morphisms are all injective maps between these sets.

Notice, in particular, that the endomorphisms of the object n are the symmetric group S_n.

Jenny Wilson (University of Chicago)
Representation Stability
TSW 2012 7 / 17
The Definition of an FI–module

Definition (Church–Ellenberg–Farb) (FI–Modules)

A (rational) FI–module is a functor

\[V : \text{FI} \to \mathbb{Q}\text{-Vect} \]

Firstly, the decomposition into irreducible \(S_n \)–representations stabilizes – in the sense that we can recover \(V_n \) from \(V_n \) by 'adding a box to the top row' to the Young diagram for each irreducible.

\[\chi \]

The characters \(\chi_n \) of \(V_n \) are given by a (unique) polynomial in the variables \(X_r \),

\[X_r(\sigma) = \# \text{r–cycles of } \sigma \quad \text{for all } \sigma \in S_n, \text{ for all } n. \]

Any sub–FI–module of \(V \) also has these properties.

We call the sequence \(\{ V_n \}_n \) uniformly representation stable.

Finite Generation of FI–Modules

Definition (Generation)

If \(V \) is an FI–module, and \(S \subseteq \bigsqcup_n V_n \), then the FI–module generated by \(S \) is the smallest sub–FI–module containing the elements of \(S \).

Definition (Finite Generation)

An FI–module is **finitely generated** if it has a finite generating set.

Example (The Permutation Representation \(V_n = \mathbb{Q}^n \))

The permutation representation \(V_n = \mathbb{Q}^n = (e_1, \ldots, e_n) \) is generated by \(e_1 \in V_1 \).

Consequences of Finite Generation

Theorem (Church–Ellenberg–Farb)

Let \(V \) be a finitely-generated FI–module. Then for \(n > 1 \)

- The decomposition into irreducible \(S_n \)–representations stabilizes.
- \(\dim(V_n) \) is polynomial in \(n \)
- The characters \(\chi_n \) of \(V_n \) are given by a (unique) polynomial in the variables \(X_r \),

\[X_r(\sigma) = \# \text{r–cycles of } \sigma \quad \text{for all } \sigma \in S_n, \text{ for all } n. \]

Any sub–FI–module of \(V \) also has these properties.

We define a rational FI–module to be a functor from the category FI to the category of rational vector spaces.

What is the data of an FI–module? For each \(n \), we have a vector space \(V_n \), with an action of the symmetric group \(S_n \). Additionally, we have a host of linear maps between these vector spaces, which are compatible with these \(S_n \)–actions.

As a first example, it's an exercise to verify that we can give the sequence of permutation representations the structure of an FI–module, by appropriately defining linear maps between the vector spaces.

We can define ‘generation’ of FI–modules in the usual way.

Given an FI–module \(V \), and a set \(S \) of vectors from the various vector spaces \(V_n \), take all linear combinations of all images of these vectors under the induced linear maps – these spaces themselves comprise an FI–module, which we say is the FI–module generated by \(S \).

Equivalently, the FI–module generated by \(S \) is the smallest sub–FI–module that contains all the vectors in \(S \).

Having defined generation, we have a notion of what it means for an FI–module to be finitely generated.

It is an exercise to verify that our sequence of permutation representations, as an FI–module, is generated by the single basis element \(e_1 \) in \(V_1 \).

Now, the main theorem.

If we have a finitely generated FI–module \(V \), then the underlying sequence of \(S_n \)–representations satisfies the following properties, for large \(n \):

Firstly, the decomposition into irreducible \(S_n \)–representations stabilizes – in the sense that we can recover \(V_{n+1} \) from \(V_n \) by 'adding a box to the top row' to the Young diagram for each irreducible.

Secondly, the dimension of \(V_n \) is polynomial in \(n \).

Thirdly, the characters have a 'global' description: they are polynomials in variables \(X_r \), where \(X_r \) is a function that takes a permutation and reads off the number of \(r \)–cycles in its cycle type.

The theorem actually says more: in a given example, we can put enough constraints on these character polynomials that the problem of determining the characters is reduced to a finite computation. It is enough to compute the value of the characters for certain small \(n \).

Finally, these FI–modules have the 'Noetherian property' that every sub–FI–module of an finitely generated FI–module is itself finitely generated, and so also satisfies all of these properties.
Some Representation Stable Cohomology Sequences

<table>
<thead>
<tr>
<th>Author</th>
<th>Sequence Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Church–Farb</td>
<td>$H^k(P_n; \mathbb{Q})_n$ The pure braid group</td>
</tr>
<tr>
<td>Jimenez-Rolland</td>
<td>$H^k(P\text{Mod}(\Sigma^g_n); \mathbb{Q})_n$ The pure MCG of an n-puncture surface Σ^g_n</td>
</tr>
<tr>
<td>Church</td>
<td>$H^k(P\text{Conf}(M); \mathbb{Q})_n$ Ordered configuration space of a manifold M</td>
</tr>
<tr>
<td>Putman</td>
<td>$H^k(P\text{Mod}(\Sigma^r_n); \mathbb{Q})_n$</td>
</tr>
<tr>
<td>Putman</td>
<td>$H^k(\text{SL}_n(\mathbb{Z}, \ell); \mathbb{F})_n$ Certain congruence subgroups</td>
</tr>
<tr>
<td>Wilson</td>
<td>$H^k(P\Sigma_n; \mathbb{Q})_n$ The pure symmetric automorphism group $P\Sigma_n$ of the free group</td>
</tr>
</tbody>
</table>

Here are some results that have been proven since Church–Farb’s “representation stability” paper appeared 2 years ago.

The FI–module ‘machinery’ developed by Church–Eilenberg–Farb earlier this year has hugely simplified many of these proofs. These results were originally proved through a detailed analysis of the combinatorics of the decomposition into S_n–irreducibles – a much more difficult task than verifying an FI–module structure and proving finite generation.

The ‘Noetherian property’ has also proven a powerful tool. In particular, to study cohomology of the mapping class group of a punctured manifold, or of the configuration space of a manifold, we realize these cohomology groups as the limit of a spectral sequence. The ‘Noetherian property’ implies that is suffices to prove finite generation for the E_2 page, which enormously simplifies these proofs.

In summary: Simple (and often easily-verified) symmetries of these sequences of S_n–representations imposes very strong constraints on their structure and growth. The failure of these sequences to be (co)homologically stable in the classical sense can be seen as a consequence of these symmetries.

Open Question

Problem

Compute the characters, and the stable decompositions into irreducibles, in the above examples.

In each of these examples, it has been proven that for each k, the cohomology groups are uniformly representation stable – but we know very little about what the stable characters, and decompositions into irreducibles, actually are.

These questions are particularly compelling, since the constraints on the degree of the character polynomials make these computations much more tractable.

My Research

My current project

To develop a unified “FI–module theory” for the three families of classical Weyl groups.

FI–modules are a tool for studying sequences of representations of the symmetric groups. I am currently working on a project to extend the theory to sequences of representations of the other classical families of Weyl groups – the hyperoctahedral groups in types B/C, and the even-signed permutation groups in type D.
In this talk, I described representation stability and FI–modules as tools to generalize the theory of homological stability to sequences with group actions. This is, in fact, only one corner of the theory that has been developed by Church–Ellenberg–Farb and others.

The theory also has applications to classical representation theory, combinatorics, algebraic geometry, and number theory, among other fields. There are a wealth of open problems and possible new directions.

Full details and additional applications are given in these preprints by Church–Farb and Church–Ellenberg–Farb.

Both papers are available on the ArXiv.

In summary

- The theory of representation stability and FI–modules gives a language for understanding the patterns of growth of sequences of group representations.

- It allows us to deduce strong constraints on the structure of such a sequence using only elementary symmetries.

Comments, questions, and suggestions are welcome.

Contact me at wilsonj@math.uchicago.edu.

Acknowledgements

Many thanks to Benson Farb, Tom Church, Jordan Ellenberg, and Rita Jimenez-Rolland for their help and guidance.