FlW-modules and constraints on classical Weyl group characters

Jennifer C. H. Wilson

April 9, 2015

Abstract

In this paper we study the characters of sequences of representations of any of the three families of classical Weyl groups \(W_n \): the symmetric groups, the signed permutation groups (hyperoctahedral groups), or the even-signed permutation groups. Our results extend work of Church, Ellenberg, Farb, and Nagpal [CEF12], [CEFN14] on the symmetric groups. We use the concept of an \(\text{FI}_W \)-module, an algebraic object that encodes the data of a sequence of \(W_n \)-representations with maps between them, defined in the author’s recent work [Wil14].

We show that if a sequence \(\{ V_n \} \) of \(W_n \)-representations has the structure of a finitely generated \(\text{FI}_W \)-module, then there are substantial constraints on the growth of the sequence and the structure of the characters: for \(n \) large, the dimension of \(V_n \) is equal to a polynomial in \(n \), and the characters of \(V_n \) are given by a character polynomial in signed-cycle-counting class functions, independent of \(n \). We determine bounds the degrees of these polynomials.

We continue to develop the theory of \(\text{FI}_W \)-modules, and we apply this theory to obtain new results about a number of sequences associated to the classical Weyl groups: the cohomology of complements of classical Coxeter hyperplane arrangements, and the cohomology of the pure string motion groups (the groups of symmetric automorphisms of the free group).

Contents

1 Introduction ... 2
 1.1 FlW-modules and finite generation 4
 1.2 Character polynomials in type B/C and D 8
 1.3 FlW♯-modules .. 10
 1.4 Some applications .. 10
 1.5 Relationship to the theory of Fl-modules 13
1 Introduction

In recent work [Wil14] we developed the theory of FI_W–modules to study sequences of representations of any of the three families of classical Weyl groups: the symmetric groups S_n, the hyperoctahedral groups (signed permutation groups) $B_n \cong (\mathbb{Z}/2\mathbb{Z})^n \rtimes S_n$, and their index-two subgroups of even-signed permutation groups D_n. The results generalize work of Church, Ellenberg, Farb, and Nagpal [CEFN14, CEF12] on sequences of S_n–representations.

Let W_n denote one of these families. Many naturally occurring sequences of W_n–representations $\{V_n\}_n$ with maps $V_n \rightarrow V_{n+1}$ carry the structure of an finitely generated FI_W–module, an elementary and often easily established condition which we define in detail below.

We analyze two such families of sequences in Section 5. The first is the cohomology of the pure string motion groups $P\Sigma_n$, groups related to the pure braid groups. The group $P\Sigma_n$ can also be identified with the group of pure symmetric automorphisms of the free group F_n. The second family is the cohomology of the (complexified) complements $\mathcal{M}_W(n)$ of the hyperplanes fixed by reflections in the Coxeter groups W_n. The hyperplane complements $\mathcal{M}_W(n)$ are objects of classical and current mathematical interest.

In this paper we develop general results on the characters of finitely generated FI_W–modules over characteristic zero. We prove that these characters admit very specific descriptions: they are (for n large) given by character polynomials, polynomials in signed-cycle-counting class functions, as described in Section 4.
Theorem 4.6. (Finitely generated FI_W–modules have character polynomials). Let V be an FI_W–module over characteristic zero finitely generated in degree ≤ d. Let χ_{V_n} denote the character of the W_n–representation V_n. Then there exists a unique character polynomial F_V of degree at most d such that F_V(σ) = χ_{V_n}(σ) for all σ ∈ W_n, for all n sufficiently large.

Church–Ellenberg–Farb proved this result in type A [CEF12, Theorem 2.67]. Theorem 4.16 gives a more detailed statement of the result in type B/C and D, including bounds on the stable range.

These character polynomials provide a description of the characters of V_n that is independent of n, and moreover the character polynomials’ restrictive structure reflects the strong constraints on the W_n–subrepresentations that can appear in a finitely generated FI_W–module.

One immediate consequence of the existence of character polynomials is that the dimensions dim(V_n) are (for n large) equal to a polynomial in n. We prove in Theorem 4.20 that this same phenomenon holds for sequences of representations {V_n}_n over arbitrary fields when V_n admits a finitely generated FI_W–module structure. Since W_n–representations over positive characteristic need not be completely reducible, the study of these sequences is more subtle – but Theorem 4.20 nonetheless offers some control over their growth.

Theorem 4.20. (Polynomial growth of dimension over arbitrary fields). Let k be any field, and let V be a finitely generated FI_W–module over k. Then there exists an integer-valued polynomial P(T) ∈ ℚ[T] such that

\[\text{dim}_k(V_n) = P(n) \quad \text{for all } n \text{ sufficiently large.} \]

Theorem 4.20 is proved in type A by Church–Ellenberg–Farb–Nagpal [CEFN14, Theorem 1.2].

These stability results for FI_W–modules extends our earlier work [Wil14]. We proved that if an FI_W–module over characteristic zero is finitely generated, the decompositions of the representations V_n into irreducible subrepresentations are in some sense eventually constant in n: these sequences are uniformly representation stable as defined by Church–Farb [CF13]. See Section 2.2 for a complete definition.

In this paper we introduce FI_W♯–modules, a subclass of FI_W–modules with additional symmetries that allow us to deduce even stronger restrictions on the structure of the underlying sequence of representations; see Section 3.

Examples of sequences of W_n–representations with finitely generated FI_W–module and FI_W♯–module structures are prevalent throughout the fields of geometry, topology, algebra, and combinatorics. We establish this structure in two examples: the
The cohomology of the pure string motion groups $P\Sigma_n$ (Section 5.1) and the cohomology of the hyperplane complements $M_W(n)$ (Section 5.2). Theorem 1.1 summarizes our results.

Theorem 1.1. Let W_n denote S_n, B_n, or D_n. Let X_n denote either the pure string motion groups $P\Sigma_n$ or the (complexified) complements $M_W(n)$ of the reflecting hyperplanes of W_n. Then in each degree m the sequence $\{H^m(X_n; \mathbb{Q})\}_n$ is an FI$_W$–module finitely generated in degree $\leq 2m$. We show

- The sequence $H^m(X_n; \mathbb{Q})$ is uniformly representation stable, stabilizing for $n \geq 4m$.
- For all values of n, the characters of $H^m(X_n; \mathbb{Q})$ are given by a unique character polynomial of degree at most $2m$.

These and other results for $P\Sigma_n$ and $M_W(n)$ are described in detail in Section 5.

The theory of FI$_W$–modules derives much of its strength from the extra algebraic structure provided to these sequences of W_n–representations. In this framework each sequence $\{V_n\}_n$ is encoded as a single object, an FI$_W$–module, in a category that closely parallels the category of modules over a ring. In Section 2.3 we review the structure of maps, presentations, direct sums, and tensor products of FI$_W$–modules. We proved that FI$_W$–modules over Noetherian rings are Noetherian [Wil14, Section 4.3]; see Section 2.3.2. We developed induction and restriction operations between the three families of groups [Wil14, Sections 3.5 and 3.6]. These operations are reviewed in Section 2.3.4.

In our previous work [Wil14, Section 5.2] we gave an application analogous to Murnaghan’s classical theorem for Kronecker coefficients [Mur38], a stability theorem concerning tensor products of S_n–representations. We showed that type B/C and D versions of Murnaghan’s result follow readily from the FI$_W$–module theory [Wil14, Theorem 5.3 and Corollary 5.4]. These stability results have simple interpretations in this FI$_W$–module context: tensor products of finitely generated FI$_W$–modules are themselves finitely generated.

The theory of FI$_W$–modules gives a conceptual foundation and a language to describe stability phenomena in sequences of W_n–representations such as these.

1.1 FI$_W$–modules and finite generation

Definition 1.2. (The Category FI$_W$). Here we will define the three categories FI$_A \subseteq$ FI$_D \subseteq$ FI$_{BC}$, denoted generically by FI$_W$. Consider the category whose objects are \emptyset and for each $n \in \mathbb{N}$ the finite set $n = \{1, -1, 2, -2, \ldots, n, -n\}$, and whose morphisms are all injective maps. We define FI$_W$ to be the smallest subcategory containing the morphisms $W_n \subseteq \text{End}(n)$ and the canonical inclusion maps $I_n : n \rightarrow (n + 1)$.

In each case, the endomorphisms \(\text{End}(n) \) of \(\text{FI}_W \) are precisely the Weyl group \(W_n \). The category \(\text{FI}_A \) is equivalent to the category of all finite sets and injective maps, denoted \(\text{FI} \) by [CEF12]. It turns out that for \(n \neq m \), the set of morphisms \(m \to n \) in \(\text{FI}_D \) and \(\text{FI}_{BC} \) are the same; see [Wil14, Remark 3.1].

A description of each category is given in Table 1.

<table>
<thead>
<tr>
<th>Category</th>
<th>Objects</th>
<th>Morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{FI}_{BC})</td>
<td>(n = {\pm 1, \pm 2, \ldots, \pm n})</td>
<td>{ injections (f : m \to n) \mid (f(-a) = -f(a)) (\forall a \in m) } \text{ End}(n) \cong B_n }</td>
</tr>
<tr>
<td>(\text{FI}_D)</td>
<td>(n = {\pm 1, \pm 2, \ldots, \pm n})</td>
<td>{ injections (f : m \to n) \mid (f(-a) = -f(a)) (\forall a \in m); isomorphisms must reverse an even number of signs } \text{ End}(n) \cong D_n }</td>
</tr>
<tr>
<td>(\text{FI}_A)</td>
<td>(n = {\pm 1, \pm 2, \ldots, \pm n})</td>
<td>{ injections (f : m \to n) \mid (f(-a) = -f(a)) (\forall a \in m); (f) preserves signs } \text{ End}(n) \cong S_n }</td>
</tr>
</tbody>
</table>

Table 1: The Categories \(\text{FI}_W \)

For \(m < n \) we denote by \(I_{m,n} \) the canonical inclusion \(\{\pm 1, \ldots, \pm m\} \hookrightarrow \{\pm 1, \ldots, \pm n\} \) and abbreviate \(I_n := I_{n,(n+1)} \).

Definition 1.3. (\(\text{FI}_W \)-module and \(\text{FI}_W \)-module maps). An \(\text{FI}_W \)-module \(V \) over a commutative ring \(k \) is a (covariant) functor

\[
V : \text{FI}_W \longrightarrow k\text{-Mod}
\]

from \(\text{FI}_W \) to the category of \(k \)-modules. We denote \(V_n := V(n) \) and \(f_* := V(f) \).

\(\text{FI}_A \)-modules are precisely the \(\text{FI} \)-modules studied in [CEF12, CEFN14].

A co-\(\text{FI}_W \)-module over \(k \) is a functor from the dual category

\[
\text{FI}_W^{\text{op}} \longrightarrow k\text{-Mod}.
\]

A map of \(\text{FI}_W \)-modules \(F : V \longrightarrow W \) is a natural transformation, that is, a sequence of maps \(F_n : V_n \to W_n \) that commute with the action of the \(\text{FI}_W \) morphisms. \(\text{FI}_W \)-module injections, quotients, kernels, cokernels, direct sums, etc, are defined pointwise.
Definition 1.4. (Finite generation, Degree of generation). Let V be an FI$_W$–module. Given a subset $S \subseteq \bigsqcup_{n=0}^{\infty} V_n$, the sub–FI$_W$–module generated by S is the smallest sub–FI$_W$–module U of V containing S. S is a generating set for U: the images of these elements under the FI$_W$ morphisms span each $k[\mathcal{W}_n]$–module U_n.

An FI$_W$–module V is finitely generated if it has a finite generating set, and V is generated in degree $\leq d$ if it has a generating set contained in $\bigsqcup_{n=0}^{d} V_n$.

Examples of FI$_W$–modules. To illustrate this concept we give some first examples of FI$_W$–modules over \mathbb{Q}. Fix the Weyl group family \mathcal{W}_n to be S_n, D_n, or B_n. To specify the FI$_W$–module structure on a sequence $\{V_n\}$, it suffices to state the \mathcal{W}_n–actions and the maps $(I_n)_*: V_n \to V_{n+1}$ associated to the natural inclusions I_n.

Example 1.5. The following are FI$_W$–modules.

1. Example: Trivial representations. For $n \geq 0$ let $V_n = \mathbb{Q}$ be the trivial \mathcal{W}_n–representation with isomorphisms $(I_n)_*: V_n \cong V_{n+1}$. These spaces form an FI$_W$–module with a single generator in degree 0.

2. Example: Signed permutation matrices. The groups D_n and B_n are canonically represented by $n \times n$ signed permutation matrices, that is, generalized permutation matrices with nonzero entries equal to 1 or -1. Throughout Example 1.5 we let \mathbb{Q}^n denote the representation of S_n, D_n, or B_n by (signed) permutation matrices. The representations $V_0 = 0$ and $V_n = \mathbb{Q}^n$ with their natural inclusions form an FI$_W$–module finitely generated in degree 1.

3. Example: j-fold powers. For any integer j, the j-fold tensor power, exterior power, and symmetric power on \mathbb{Q}^n each form an FI$_W$–module finitely generated in degree j. More generally, composing any FI$_W$–module V with another functor k–Mod $\to k$–Mod will yield a new FI$_W$–module.

4. Example: Represented functors $M_{W}(m)$. For fixed integer $m \geq 0$, the sequence of k-modules

$$M_{W}(m)_n := k[\text{Hom}_{\text{FI}_W}(m, n)]$$

form an FI$_W$–module, with FI$_W$ morphisms acting on basis elements $e_f,f \in \text{Hom}_{\text{FI}_W}(m, n)$ by postcomposition. These are in a sense the “free” FI$_W$–modules; see Definition 2.3.

5. Example: The FI$_W$–modules $M_{W}(U)$. Fix an integer d and a \mathcal{W}_d–representation U. Let \mathbb{Q} denote the trivial \mathcal{W}_{n-d}–representation. Let $U \boxtimes \mathbb{Q}$ denote the $(\mathcal{W}_d \times \mathcal{W}_{n-d})$–representation.
W_{n-d})-representation given by the external tensor product of U and Q. Define
\[
M_{\mathcal{W}}(W)_n := \begin{cases}
0, & n < d \\
\text{Ind}_{W_d \times W_{n-d}}^{W_n} U \boxtimes Q, & n \geq d
\end{cases}
\]

Then there are induced maps \(M_{\mathcal{W}}(U)_n \to M_{\mathcal{W}}(U)_{n+1}\) giving this sequence the structure of an FI_{\mathcal{W}}-module finitely generated in degree \(d\). Specifically, the natural inclusion of \((W_d \times W_{n-d})\)-representations
\[
U \boxtimes Q \hookrightarrow \text{Res}_{W_d \times W_{n-d}}^{W_{n+1}} \text{Ind}_{W_d \times W_{n+1-d}}^{W_{n+1}} U \boxtimes Q
\]
and the universal property of induction give \(W_n\)-equivariant maps
\[
\text{Ind}_{W_d \times W_{n-d}}^{W_n} U \boxtimes Q \longrightarrow \text{Res}_{W_n}^{W_{n+1}} \text{Ind}_{W_d \times W_{n+1-d}}^{W_{n+1}} U \boxtimes Q
\]
which define the FI_{\mathcal{W}}-module structure on \(M_{\mathcal{W}}(U)\). An alternate, equivalent description of \(M_{\mathcal{W}}(U)\) is given in Definition 2.3.

Taking \(d = 0\) and \(U\) the trivial representation \(Q\), we recover Example 1.5.1. Taking \(d = 1\) and \(U \cong Q^1\) recovers Example 1.5.2. For any \(d\), taking \(U\) to be the regular representation \(k[W_d]\) recovers Example 1.5.4. The FI_{\mathcal{W}}-modules \(M_{\mathcal{W}}(U)\) are discussed in Section 2.3.1.

6. **Example: Zero maps.** Let \(\{V_n\}\) be any sequence of non-zero rational \(W_n\)-representations, and and let \((I_n)_*\) be the zero maps. These form an FI_{\mathcal{W}}-module that is infinitely generated, with infinite degree of generation.

7. **Example: Torsion and truncated FI_{\mathcal{W}}-modules.** Define FI_{\mathcal{W}}-modules \(V\) and \(U\) by
\[
V_n := \begin{cases}
Q^n, & \text{with } (I_n)_* \text{ the natural inclusions, } n < 20 \\
0, & n \geq 20
\end{cases}
\]
\[
U_n := \begin{cases}
0, & n < 20 \\
Q^n, & \text{with } (I_n)_* \text{ the natural inclusions, } n \geq 20
\end{cases}
\]

Then the “torsion” FI_{\mathcal{W}}-module \(V\) is finitely generated in degree 1, and the “truncated” FI_{\mathcal{W}}-module \(U\) is finitely generated in degree 20.

In contrast to Example 1.5, the sequence of alternating representations and the sequence of regular representations \(Q[W_n]\), each with their canonical inclusions, do not form FI_{\mathcal{W}}-modules; see [Wil14, Examples 3.5 and 3.6].
1.2 Character polynomials in type B/C and D

Let k be a field of characteristic zero. One of our main results is that the sequence of characters of a finitely generated FI$_W$–module over k is, for n large, equal to a character polynomial which does not depend on n. This was proven for symmetric groups in [CEF12, Theorem 2.67], and here we extend these results to the groups D_n and B_n.

Character polynomials for the symmetric groups date back to Murnaghan [Mur51] and Specht [Spe60]; they are described in Macdonald [Mac79, I.7.14]. In Section 4 we introduce character polynomials for the groups B_n and D_n, in two families of signed variables. We use the classical results for S_n to derive formulas for the character polynomials of irreducible B_n–representations (Theorem 4.11), and use these formulas to study the characters of FI$_W$–modules in type B/C and D.

Conjugacy classes of the hyperoctahedral group are classified by signed cycle type, see Section 2.1.2 for a description. We define the functions X_r, Y_r on $\bigsqcup_{n=0}^\infty B_n$ such that

$X_r(\omega)$ is the number of positive r–cycles in ω,

$Y_r(\omega)$ is the number of negative r–cycles in ω.

The functions X_r, Y_r are algebraically independent as class functions on $\bigsqcup_{n=0}^\infty B_n$, and so they form a polynomial ring $k[X_1, Y_1, X_2, Y_2, \ldots]$ whose elements span the class functions on B_n for each $n \geq 0$.

We prove that the sequence of characters of $\{V_n\}$ associated to any finitely generated FI$_{BC}$–module or FI$_D$–module V over a field of characteristic zero are equal to a unique element of $k[X_1, Y_1, X_2, Y_2, \ldots]$ for all n sufficiently large.

Example 1.6. (Signed permutation matrices: A first example of a character polynomial). As an elementary example of a sequence of B_n–representations described by a character polynomial, consider the canonical action of the hyperoctahedral groups B_n on the vector space \mathbb{Q}^n by signed permutation matrices. The trace of a signed permutation matrix σ is

$\text{Tr}(\sigma) = \#\{1\’s\ on\ the\ diagonal\ of\ \sigma\} - \#\{(-1)\’s\ on\ the\ diagonal\ of\ \sigma\}$

$= \#\{\text{positive one cycles of } \sigma\} - \#\{\text{negative one cycles of } \sigma\}$

$= X_1(\sigma) - Y_1(\sigma)$

and so the characters χ_n of this sequence are given by the function $\chi_n = X_1 - Y_1$ for all values of n.

The group D_n is canonically realized as the subgroup of this signed permutation matrix group comprising those matrices with an even number of entries equal to
The character of this representation is the restriction of the character \(\chi_n \) to the subgroup \(D_n \subseteq B_n \), and so again this sequence of characters is equal to the character polynomial \(\chi_n = X_1 - Y_1 \) for all values of \(n \).

Conjugacy classes of the groups \(D_n \subseteq B_n \) are not fully classified by their signed cycle type, due to the existence of certain 'split' classes when \(n \) is even; see Section 2.1.3 for details. The functions \(\{X_r, Y_r\} \) therefore do not span the space of class functions on any group \(D_n \) with \(n \) even. We prove, however, that when a sequence of representations \(\{V_n\} \) of \(D_n \) has the structure of a finitely generated FI\(_D\)-module, for \(n \) large the characters depend only on the signed cycle type of the classes. Remarkably, the characters associated to \(\{V_n\} \) are, for \(n \) large, also equal to a character polynomial independent of \(n \).

Theorem 4.16. (Characters of finitely generated FI\(_W\)-modules are eventually polynomial). Let \(k \) be a field of characteristic zero. Suppose that \(V \) is a finitely generated FI\(_{BC}\)-module with weight \(\leq d \) and stability degree \(\leq s \), or, alternatively, suppose that \(V \) is a finitely generated FI\(_D\)-module with weight \(\leq d \) such that \(\text{Ind}_{D}^{BC} V \) has stability degree \(\leq s \). In either case, there is a unique polynomial

\[
F_V \in k[X_1, Y_1, X_2, Y_2, \ldots],
\]

independent of \(n \), such that the character of \(W_n \) on \(V_n \) is given by \(F_V \) for all \(n \geq s + d \). The polynomial \(F_V \) has degree \(\leq d \), with \(\deg(X_i) = \deg(Y_i) = i \).

Weight and stability degree are defined in Sections 2.3.5 and 2.3.6; these quantities are always finite for finitely generated FI\(_W\)-modules and associated induced FI\(_W\)-modules.

Theorem 4.16 generalizes the result of Church–Ellenberg–Farb [CEF12, Theorem 2.67] that the characters of finitely generated FI\(_A\)-module are, for \(n \) sufficiently large, given by a character polynomial in the class functions \(X_r \) on \(\coprod_{n=0}^{\infty} S_n \) that takes a permutation \(\sigma \) and returns the number of \(r \)-cycles in its cycle type.

In our applications, it remains an open problem to compute the character polynomials in all but a few small degrees. Since we can often establish explicit upper bounds on the degrees and stable ranges of these polynomials, the problem is much more tractable: to find the character polynomials – and so determine the characters for all values of \(n \) – it is enough to compute the characters for finitely many specific values of \(n \).

Eventually polynomial dimensions. Suppose that \(V \) is a finitely generated FI\(_W\)-module with character polynomial \(F_V \). For each \(n \) in the stable range, the dimension \(\dim(V_n) \) is given by \(F_V(n, 0, 0, 0, \ldots) \), the value of the character polynomial on the identity element in \(W_n \). This has the immediate consequence:
Corollary 4.17. (Polynomial growth of dimension). Let V be an FI$_W$–module over a field of characteristic zero, and suppose V is finitely generated in degree $\leq d$. Then for large n, $\dim(V_n)$ is equal to a polynomial in n of degree at most d. Equality holds for n in the stable range given in Theorem 4.16.

Although our results on character polynomials in general hold only over fields of characteristic zero, this “eventually polynomial” growth of dimension holds even over positive characteristic, as we show in Theorem 4.20 (stated above). Our proof of Theorem 4.20 uses result in type A proven by Church–Ellenberg–Farb–Nagpal [CEFN14, Theorem 1.2].

1.3 FI$_W^\#$–modules

In Section 3 we study FI$_{BC}^\#$–modules, a class of FI$_{BC}$–modules with additional structure: the FI$_{BC}$ morphisms admit partial inverses. See Definition 3.1 for a complete description. FI$_{BC}^\#$–modules mirror the FI$^\#$–modules (“FI sharp modules”) introduced by Church–Ellenberg–Farb [CEF12] in type A.

In Example 1.5, the FI$_{BC}$–modules in number 1, 2, 3, and 5 all have FI$^\#_{BC}$–module structures. Number 6 and 7 cannot be promoted to FI$^\#_{BC}$–modules.

The structure of a finitely generated FI$_{BC}^\#$–module is highly constrained. We prove in Theorem 3.7 that FI$_{BC}^\#$–modules can be decomposed as direct sums of FI$_W$–modules of the form

$$\left\{ \bigoplus_{m=0}^n \text{Ind}_{B_m \times B_{n-m}}^{B_n} U_m \otimes k \right\} = \bigoplus_{m=0}^n M_W(U_m).$$

As in Example 1.5, k denotes the trivial B_{n-m}–representation, and U_m is a B_m–representation, possibly 0. The external tensor product $(U_m \otimes k)$ is the k–module $(U_m \otimes k)$ as a $(B_m \times B_{n-m})$–representation. This classification result parallels a corresponding statement for FI$^\#$–modules proven by Church–Ellenberg–Farb [CEF12, Theorem 2.24].

Some consequences of this additional structure: an FI$_{BC}^\#$–module finitely generated in degree $\leq d$ has characters equal to a unique character polynomial of degree at most d for all values of n, and dimensions given by a polynomial in n of degree at most d for all n. Additional consequences are given in Section 4.5.

1.4 Some applications

FI$_W$–modules and FI$^\#_W$–modules arise naturally throughout geometry and topology, and in Section 5 we use the theory developed here to give results for two such families: the cohomology groups of the pure string motion group $P\Sigma_n$, and
the cohomology groups of the hyperplane complements associated to the reflection groups W_n.

Application: the pure string motion group. Let $P\Sigma_n$ be the group of *pure string motions*, motions of n disjoint, unlinked, unknotted, smoothly embedded circles S^1 in \mathbb{R}^3. This motion group is a generalization of the pure braid group, and can be realized as the group of *pure symmetric automorphisms* of the free group F_n; see Section 5.1 for a complete definition.

The pure string motion group also appears in the literature under the names the group of loops, the *pure untwisted ring group*, the group of basis-conjugating automorphisms of the free group, the *Fouxe-Rabinovitch automorphism group* of the free group, and the *Whitehead automorphism group* of the free group. For more background on these groups and their cohomology, see for example Brendle–Hatcher [BH11], Brownstein–Lee [BL93], Dahm [Dah62], Goldsmith [Gol81], Jensen–McCammond–Meier [JMM06], McCool [McC86], or Wilson [Wil12].

Theorem 5.3. Let k be \mathbb{Z} or \mathbb{Q}. The cohomology rings $H^*(P\Sigma_n; k)$ form an FI\mathcal{BC}^{\sharp}–module, and a graded FI\mathcal{BC}–algebra of finite type, with $H^m(P\Sigma_n; k)$ finitely generated in degree $\leq 2m$. In particular the FI\mathcal{BC}–algebra $H^*(P\Sigma_n; \mathbb{Q})$ has slope ≤ 2.

We recover (with considerably less effort) the main result of our previous paper [Wil12]:

Corollary 5.4. For each m, the sequence $\{H^m(P\Sigma_n; \mathbb{Q})\}_n$ of representations of B_n (or S_n) is uniformly representation stable, stabilizing once $n \geq 4m$.

A consequence of uniform representation stability, which follows from stability for the trivial representation and a transfer argument, is rational homological stability for the string motion group Σ_n. This recovers the rational case of a result of Hatcher and Wahl [HW10, Corollary 1.2]. More details are given in Section 7 of [Wil12].

Another consequence of Theorem 5.3 is the existence of character polynomials. Because these cohomology groups are FI\mathcal{BC}^{\sharp}–modules, their characters are equal to the character polynomial for all values of n, and not just n sufficiently large.

Corollary 5.6. Let k be \mathbb{Z} or \mathbb{Q}. Fix an integer $m \geq 0$. The characters of the sequence of B_n–representations $\{H^m(P\Sigma_n; k)\}_n$ are given, for all values of n, by a unique character polynomial of degree $\leq 2m$.
We compute these character polynomials explicitly in degree 1 and 2:

\[\chi_{H^1(P\Sigma\cdot Z)} = X_1^2 - X_1 - Y_1 + Y_1 \]

\[\chi_{H^2(P\Sigma\cdot Z)} = 2X_2 + Y_1^2 + 2Y_2^2 - X_1^2Y_1^2 - \frac{3}{2}Y_1^4 + X_1^2 - 2X_2^2 - \frac{3}{2}X_1^3 + \frac{1}{2}Y_1^4 - X_1Y_1^2 Y_2^2 - X_1Y_1^2Y_2 - \frac{1}{2}X_1^2Y_1 - X_1X_2 - 2Y_2 \]

It is an open problem to compute these polynomials for larger values of \(m \).

Application: hyperplane complements. Each family of groups \(W_n \) has a canonical action on \(\mathbb{R}^n \) by signed permutation matrices; we denote by \(\mathcal{M}_W(n) \) the set of complexified hyperplanes fixed by reflections in \(W_n \), and

\[\mathcal{M}_W(n) := C^n \bigcup_{H \in \mathcal{M}(n)} H \]

the associated hyperplane complement. See Section 5.2 for explicit descriptions of these spaces, and a brief survey of results on the structure of their cohomology rings. In type A, the space \(\mathcal{M}_A(n) \) is precisely the ordered \(n \)-point configuration space of \(\mathbb{C} \), and Church–Ellenberg–Farb show its cohomology groups are finitely generated \(\text{FI}_{A^\pm} \)-modules [CEF12, Theorem 4.7]. Using a presentation for \(H^*(\mathcal{M}_W(n); C) \) computed by Brieskorn [Bri73] and Orlik–Solomon [OS80], we generalize the results of [CEF12] to all three families of classical Weyl groups.

Theorem 5.8. Let \(\mathcal{M}_W \) be the complex hyperplane complement associated with the Weyl group \(W_n \) in type \(A_{n-1}, B_n/C_n, \) or \(D_n \). In each degree \(m \), the groups \(H^m(\mathcal{M}_A(\bullet), C) \) form an \(\text{FI}_{A^\pm} \)-module finitely generated in degree \(\leq 2m \), and both \(H^m(\mathcal{M}_B(\bullet), C) \) and \(H^m(\mathcal{M}_D(\bullet), C) \) are \(\text{FI}_{BC^\pm} \)-modules finitely generated in degree \(\leq 2m \).

Corollary 5.9. In each degree \(m \), the sequence of cohomology groups \(\{ H^m(\mathcal{M}_W(n), C) \} \) is uniformly representation stable in degree \(\leq 4m \).

Corollary 5.10. In each degree \(m \), the sequence of characters of the \(W_n \)-representations \(H^m(\mathcal{M}_W(n), C) \) are given by a unique character polynomial of degree \(\leq 2m \) for all \(n \).

We emphasize that, because these sequences are \(\text{FI}_{W^\pm} \)-modules, their characters are equal to the character polynomial for every value of \(n \).

Corollary 5.9 recovers the work of Church–Farb [CF13, Theorem 4.1 and 4.6] in types A and B/C. In type A, Theorem 5.8 follows from the work of Church–Ellenberg–Farb [CEF12] on the cohomology of the ordered configuration space of the plane.
Character polynomials and stable decompositions for $H^m(\mathcal{M}_A(\bullet), \mathbb{C})$ are computed in [CEF12] for some small values of m. In Type B/C and D, we can also compute the character polynomials by hand in small degree:

$$
\chi_{H^1(\mathcal{M}_D(\bullet), \mathbb{C})} = 2 \binom{X_1}{2} + 2 \binom{Y_1}{2} + 2X_2
$$

$$
\chi_{H^1(\mathcal{M}_{BC}(\bullet), \mathbb{C})} = 2 \binom{X_1}{2} + 2 \binom{Y_1}{2} + 2X_2 + X_1 - Y_1
$$

See Section 5.2 for the character polynomials and stable decompositions in degree m is 1 and 2.

1.5 Relationship to the theory of FI–modules

Our theory of FI$_W$–modules has very close parallels to work of Church, Ellenberg, Farb, and Nagpal [CEF12, CEFN14] on the symmetric groups, which we aim to highlight throughout this paper. Working with the other classical Weyl groups, however, we do encounter some new obstacles and some new phenomena. We enumerate some differences here:

Character polynomials in type B/C. The existence of character polynomials for finitely generated FI$_A$–modules follows immediately from representation stability and classical results in algebraic combinatorics: the formula for the character polynomial of the irreducible S_n–representation $V(\lambda)_n$ appear in texts such as Mac-Donald [Mac79]. The achievement of [CEF12] here was uncovering this (regrettable little-known) formula and recognizing its implications for the study of FI$_A$–modules. The analogous formulas for the irreducible B_n–representations are less readily available, however, and we compute these in Section 4.2. These signed character polynomials now involve two sets of variables X_r and Y_r, corresponding to the positive and negative cycles for these groups.

Character polynomials in type D. Given the classification of conjugacy classes in type D (Section 2.1.3), and the existence of ‘split’ classes that could not be characterized by signed cycle type, we had not expected an analogue of character polynomials to exist for sequences of D_n–representations, except in exceptional cases. A finitely generated FI$_D$–module does have characters equal, for large n, to a character polynomial. We establish this existence result by realizing the tail of a finitely generated FI$_D$–module V as the restriction of an FI$_{BC}$–module, using properties of categorical induction Ind_{BC}^{D}.

A category FI$_{D^2}$? There does not appear to be a suitable analogue of FI$_{D^2}$ for the category FI$_D$; see Remark 3.2. Fortunately, and perhaps not by coincidence, the applications in type D where we have expected this extra structure, such as
the cohomology groups of the hyperplane complements $\mathcal{M}_D(n)$, turned out to be restrictions of $\text{FI}_{BC}\#$-modules to $\text{FI}_D \subseteq \text{FI}_{BC}$.

Acknowledgments

I am grateful to Benson Farb, Tom Church, Jordan Ellenberg, Rita Jimenez Rolland, and Peter May for numerous helpful discussions about this project. Thanks are especially due to Benson Farb, my PhD advisor, for extensive guidance and feedback throughout the project. This work was supported in part by a PGS D Scholarship from the Natural Sciences and Engineering Research Council of Canada.

2 Background

2.1 The Weyl groups of classical type and their representation theory

We briefly summarize the rational representation theory of the three families of Weyl groups, and the associated notation used in this paper. A more detailed review, with additional references, is given in [Wil14, Section 2].

2.1.1 The symmetric group S_n

Given a partition $\lambda \vdash n$, $\lambda = (\lambda_0, \lambda_1, \ldots, \lambda_r)$, we denote the parts of the partition by λ_i and index them in decreasing order $\lambda_0 \geq \lambda_1 \geq \cdots \geq \lambda_r$. We write $|\lambda| = n$ to indicate the size of the partition, and write $\ell(\lambda)$ to denote the length of λ, the number of parts.

The rational irreducible representations of the symmetric group S_n are classified by partitions of n (see for example Fulton–Harris [FH04]) and we write V_λ to denote the S_n-representation associated to the partition λ.

Given a partition $\lambda \vdash m$ and an integer $n \geq \lambda_1 + m$, define the padded partition

$$\lambda[n] := ((n - m), \lambda_1, \lambda_2, \ldots, \lambda_t).$$

We denote by $V(\lambda)_n$ the irreducible S_n-representation associated to $\lambda[n]$, that is,

$$V(\lambda)_n := \begin{cases} V_{\lambda[n]} & (n - m) \geq \lambda_1, \\ 0 & \text{otherwise.} \end{cases}$$
2.1.2 The hyperoctahedral group B_n

Recall that the hyperoctahedral group (or signed permutation group) B_n is the group of generalized permutation matrices with nonzero entries $±1$; equivalently, $B_n = (\mathbb{Z}/2\mathbb{Z})^n \rtimes S_n$ is the symmetry group of the set $\{\{-1, 1\}, \{-2, 2\}, \ldots, \{-n, n\}\}$. We frequently consider B_n as a subgroup of the symmetric group on the set

$$\Omega = \{-1, 1, -2, 2, \ldots, -n, n\},$$

and write signed permutations in the corresponding cycle notation.

The rational representation theory of B_n. Recall that the irreducible rational B_n–representations are classified by double partitions of n, ordered pairs of partitions $\lambda = (\lambda^+, \lambda^-)$ with $|\lambda^+| + |\lambda^-| = n$, as follows.

Let $V_{(\lambda^+), (\lambda^-)}$ denote the B_n–representation pulled back from S_n–representation V_{λ^+}, and denote

$$V_{(\varnothing, \lambda^-)} := V_{(\lambda^-, \varnothing)} \otimes \mathbb{Q}^\varepsilon,$$

where \mathbb{Q}^ε is the one-dimensional representation given by the character $\varepsilon : B_n \rightarrow B_n/D_n = \{±1\}$. Then for $\lambda^+ \vdash m$ and $\lambda^- \vdash (n - m)$ we define

$$V_{(\lambda^+, \lambda^-)} := \text{Ind}_{B_m \times B_{n-m}}^{B_n} V_{(\lambda^+, \varnothing)} \boxtimes V_{(\varnothing, \lambda^-)},$$

where \boxtimes again denotes the external tensor product of the B_m–representation $V_{(\lambda^+, \varnothing)}$ with the B_{n-m}–representation $V_{(\varnothing, \lambda^-)}$. The rational irreducible B_n–representations are precisely the set

$$\{V_{(\lambda^+, \lambda^-)} \mid (\lambda^+, \lambda^-) \text{ is a double partition of } n\}.$$

For a double partition $\lambda = (\lambda^+, \lambda^-)$ with $\lambda^+ \vdash \ell$ and $\lambda^- \vdash m$, we define the padded double partition $\lambda[n] := (\lambda^+[n - m], \lambda^-)$ associated to $\lambda = (\lambda^+, \lambda^-)$. We write $V(\lambda)$, or $V(\lambda^+, \lambda^-)_n$ to denote the irreducible B_n–representation

$$V(\lambda)_n := \begin{cases} V_{\lambda[n]} & (n - m) \geq \lambda^+, \\ 0 & \text{otherwise}. \end{cases}$$

The conjugacy classes of B_n. The conjugacy classes of B_n are classified by signed cycle type. Each element of B_n decomposes into a product of cycles; a factor is called an r–cycle if it maps to an r–cycle in S_n under the natural surjection. An r–cycle is positive if its r^{th} power is the identity, equivalently, if it reverses the sign of an even number of digits $\{±1, \ldots, ±n\}$. An r–cycle is negative if its r^{th} power is the product of r involutions $(-i\ i)$, equivalently, if it reverses the sign of an odd number of digits. For example, $(1)(-1)$ is a positive 1–cycle, and $(-1\ 1)$ is a negative 1–cycle.

We designate the cycle type of a signed permutation in B_n by a double partition $\nu = (\nu^+, \nu^-)$ of n, where the parts of ν^+ are the lengths of the positive cycles and the parts of ν^- are the lengths of the negative cycles.
2.1.3 The even-signed permutation group D_n

The even-signed permutation group D_n is the subgroup of signed permutation matrices B_n of matrices that have an even number of entries equal to -1.

The rational representation theory of D_n.

Given an irreducible representation V_{λ^+, λ^-} of B_n with $\lambda^+ \neq \lambda^-$, its restriction to D_n is also irreducible. We denote this irreducible D_n-representation by

$$V_{\{\lambda^+, \lambda^-\}} := \text{Res}_{D_n}^B \lambda^+, \lambda^- \cong \text{Res}_{D_n}^B \lambda^-, \lambda^+,$$

$\lambda^+ \neq \lambda^-.$

These D_n-representations are nonisomorphic for each distinct set of partitions $\{\lambda^+, \lambda^-\}$. When n is even, for any partition $\lambda \vdash \frac{n}{2}$, the irreducible B_n-representation $V_{\lambda, \lambda}$ restricts to a sum of two nonisomorphic irreducible D_n-representations of equal dimension. The irreducible rational representations of D_n are therefore classified by the set

$$\left\{ \{\lambda^+, \lambda^-\} \mid \lambda^+ \neq \lambda^-, |\lambda^+| + |\lambda^-| = n \right\} \prod \left\{ (\lambda, \pm) \mid |\lambda| = \frac{n}{2} \right\},$$

The ‘split’ irreducible representations V_{λ^+, λ^-} and V_{λ^-, λ^+} only arise when n is even.

Given an (ordered) double partition $\lambda = (\lambda^+, \lambda^-)$ with $\lambda^+ \vdash \ell$ and $\lambda^- \vdash m$, we write $V(\lambda)_n$ to denote the D_n-representation $V(\lambda)_n := \text{Res}_{D_n}^B \lambda$. Explicitly, $V(\lambda)_n$ is the D_n-representation

$$V(\lambda)_n = \begin{cases} V_{\lambda^+[n-m], \lambda^-} & (n-m) \geq \lambda^+_1 \text{ and } \lambda^+[n-m] \neq \lambda^-, \\ V_{\lambda^-, +} \oplus V_{\lambda^-, -} & (n-m) \geq \lambda^-_1 \text{ and } \lambda^+[n-m] = \lambda^-, \\ 0 & \text{otherwise.} \end{cases}$$

The D_n-representation $V(\lambda)_n$ is irreducible for all but at most one value of n.

We remark that, in contrast to the sequence of S_n or B_n representations $V(\lambda)_n$, knowing the D_n-representation $V(\lambda)_n$ for a single value of n may not be enough to determine $V(\lambda)_{n+1}$, as we cannot distinguish the partitions $\lambda^+[n-m]$ and $\lambda^-.$

The conjugacy classes of D_n. As with B_n, each element of D_n decomposes into a product of signed cycles; by definition each element must have an even number of negative cycles. Signed cycle type is a D_n conjugacy class invariant, and it nearly classifies the conjugacy classes, with one qualification: when n is even, the elements for which all cycles are positive and have even length are now split between two conjugacy classes.

2.2 Representation stability

Representation stability was introduced by Church–Farb [CF13] for a variety of families of groups G_n including S_n and B_n. In [Wil14, Section 2.2] we additionally de-
fined representation stability for sequences of D_n–representations. We recall these definitions here.

Definition 2.1. (Representation stability). Let \mathcal{W}_n be one of the families of classical Weyl groups, and suppose $\{V_n\}$ is a sequence of finite-dimensional \mathcal{W}_n–representations over characteristic zero with maps $\phi_n : V_n \to V_{n+1}$. The sequence $\{V_n, \phi_n\}$ is *consistent* if ϕ_n is equivariant with respect to the action of \mathcal{W}_n on V_n and of $\mathcal{W}_n \subseteq \mathcal{W}_{n+1}$ on V_{n+1}.

A consistent sequence $\{V_n, \phi_n\}$ is *representation stable* if it satisfies three properties:

I. *Injectivity.* The maps $\phi_n : V_n \to V_{n+1}$ are injective for $n >> 0$.

II. *Surjectivity.* The image $\phi_n(V_n)$ generates V_{n+1} as a $k[\mathcal{W}_{n+1}]$–module for $n >> 0$.

III. *Multiplicities.* Decompose V_n into irreducible \mathcal{W}_n–representations:

$$V_n = \bigoplus_\lambda c_{\lambda,n} V(\lambda)_n.$$

For each λ there exists some N_λ such that the multiplicity $c_{\lambda,n}$ of $V(\lambda)_n$ is constant for $n \geq N_\lambda$.

The sequence is *uniformly* representation stable if N_λ can be chosen independently of λ.

A main result of [Wil14] is that for rational $\text{FI}_\mathcal{W}$–modules, finite generation is equivalent to uniform representation stability.

Theorem 2.2. [Wil14, Theorem 4.22] Let k be a field of characteristic zero. An $\text{FI}_\mathcal{W}$–module V is finitely generated if and only if $\{V_n\}$ is uniformly representation stable with respect to the maps induced by the natural inclusions $I_n : n \to (n + 1)$.

Details (including bounds on the stable range) are given in Section 2.3.7.

2.3 Summary of terminology and foundations for $\text{FI}_\mathcal{W}$–modules

In this section we summarize the main definitions and foundational results developed in [Wil14] on $\text{FI}_\mathcal{W}$–module theory.

2.3.1 The $\text{FI}_\mathcal{W}$–modules $M_W(m)$ and $M_W(U)$

Definition 2.3. (The $\text{FI}_\mathcal{W}$–modules $M_W(m)$ and $M_W(U)$). Let \mathcal{W}_n denote S_n, B_n, or D_n. For fixed integer $m \geq 0$, define $M_W(m)$ to be the $\text{FI}_\mathcal{W}$–module over k such that

$$M_W(m)_n := k[\text{Hom}_{\text{FI}_\mathcal{W}}(m, n)].$$

17
with an action of \mathcal{W}_n by postcomposition.

We can identify $M_{\mathcal{W}}(m)_n$ with the k–span of the set
\[\left\{ \left(f(1), f(2), \ldots, f(m) \right) \subseteq n \mid f : m \to n \text{ an FI}_{\mathcal{W}} \text{ morphism} \right\}. \]
For each n we have an isomorphism of \mathcal{W}_n–representations
\[M_{\mathcal{W}}(m)_n \cong \text{Ind}_{\mathcal{W}_{n-m}}^{\mathcal{W}_n} k; \]
here k is the trivial \mathcal{W}_m–representation.

Given a \mathcal{W}_m–representation U, we define $M_{\mathcal{W}}(U)$ to be the FI$_{\mathcal{W}}$–module
\[M_{\mathcal{W}}(U)_n := M_{\mathcal{W}}(m)_n \otimes_{k[\mathcal{W}_m]} U. \]
In particular $M_{\mathcal{W}}(m) \cong M_{\mathcal{W}}(k[\mathcal{W}_m])$.

Let $\text{FB}_{\mathcal{W}}$ denote the wide subcategory of $\text{FI}_{\mathcal{W}}$ consisting of all objects and all endomorphisms. Denote by $\text{FB}_{\mathcal{W}}$–Mod the category of functors
\[\text{FB}_{\mathcal{W}} \to k\text{-Mod}; \]
the objects are sequences of \mathcal{W}_m–representations (with no additional maps) and the morphisms are sequences of \mathcal{W}_m–equivariant maps.

We extend $M_{\mathcal{W}}$ to a functor on the category $\text{FB}_{\mathcal{W}}$–Mod
\[M_{\mathcal{W}} : \text{FB}_{\mathcal{W}}$–Mod $\to \text{FI}_{\mathcal{W}}$–Mod $\]
\[U_m \mapsto \mu_m(U_m). \]

Given an $\text{FI}_{\mathcal{W}}$–module V and any subset $S = \{ v_i \} \subseteq \bigsqcup_{n \geq 0} V_n$, with $v_i \in V_{m_i}$, there is a unique map of $\text{FI}_{\mathcal{W}}$–module
\[\bigoplus_{i=1} \bigoplus_{m_i} M_{\mathcal{W}}(m_i) \to V \]
\[f \mapsto f_*(v_i) \quad f \in \text{Hom}_{\text{FI}_{\mathcal{W}}}(m_i, n), \text{ the basis for } M_{\mathcal{W}}(m)_n \]
from $\bigoplus_{i=1} M_{\mathcal{W}}(m_i)$ onto the $\text{FI}_{\mathcal{W}}$–submodule generated by S, the smallest submodule of V that contains S. An $\text{FI}_{\mathcal{W}}$–module V is finitely generated if and only if it is the quotient of a finite sum of $\text{FI}_{\mathcal{W}}$–modules $\bigoplus_{i=1}^\ell M_{\mathcal{W}}(m_i)$.

Definition 2.4. (Finite Presentation; Relation degree). Let V be a finitely generated $\text{FI}_{\mathcal{W}}$–module. Then V is finitely presented with relation degree r if there is a surjection
\[\bigoplus_{i=1}^\ell M_{\mathcal{W}}(m_i) \to V \]
with a kernel finitely generated in degree at most \(r \).

The Noetherian property [Wil14, Theorem 4.21] implies that all finitely generated FI\(_{W}\)–modules are finitely presented.

2.3.2 The Noetherian property

A critical property of FI\(_{W}\)–modules that underlies all our major results is that the category of FI\(_{W}\)–modules over a Noetherian ring is Noetherian. Church–Ellenberg–Farb–Nagpal prove this result for FI\(_{A}\)–modules [CEFN14, Theorem 1.1], and we use their work to prove it more generally:

Theorem 2.5. [Wil14, Theorem 4.21] (**FI\(_{W}\)–modules are Noetherian**). Let \(k \) be a Noetherian ring. Any sub–FI\(_{W}\)–module of a finitely generated FI\(_{W}\)–module over \(k \) is itself finitely generated.

2.3.3 The functor \(H_0 \)

Definition 2.6. (**The functor \(H_0 \)**). As in [CEF12, Definition 2.18], we define the functor \(H_0 \) by

\[
H_0 : \text{FI}_{W}\text{-Mod} \to \text{FB}_{W}\text{-Mod} \\
(H_0(V))_n = V_n / \left(\text{span}_W \left(\bigsqcup_{k<n} V_k \right) \right)_n
\]

\(H_0(V) \) is a minimal set of \(W_m \)–representations to generate the FI\(_{W}\)–module \(V \). We can put an FI\(_{W}\)–module structure on the \(W_n \)–representations \((H_0(V))_n \) by letting \(I_n \) act by 0 for all \(n \); it is the largest quotient of \(V \) where all FI\(_{W}\) morphisms \(f \) between distinct objects act by zero. We denote this FI\(_{W}\)–module by \(H_0(V)^{FI_{W}} \).

\(H_0 \) is a left inverse to \(M_{W} \), that is, given \(U = \{ U_m \}_m \) we have \(H_0(M_{W}(U))_m = U_m \) for all \(m \). We will see in Section 3 that additionally \(M_{W}(H_0(V)) = V \) when \(V \) has the additional structure of an FI\(_{W}\)\(^{\#} \)–module.

There are surjections

\[
M_{W}(H_0(V)) \twoheadrightarrow V \quad \text{and} \quad V \twoheadrightarrow H_0(V)^{FI_{W}}.
\]

2.3.4 Restriction and induction of FI\(_{W}\)–modules

The inclusions of categories FI\(_{A}\) \(\subseteq \) FI\(_{D}\) \(\subseteq \) FI\(_{BC}\) enable us to define restriction and induction operations on the corresponding categories of FI\(_{W}\)–modules. Both restriction and induction preserve finite generation of FI\(_{W}\)–modules, a fact that we use to recover results in type B/C and D from work of Church–Ellenberg–Farb–Nagpal.
[CEFN14] in type A. We use additional properties of these operations to develop
theory for FI\textsubscript{D}–modules using results in type B/C.

Definition 2.7. (Restriction). Consider Weyl group families \(W_n \) and \(\overline{W}_n \) with \(W_n \subseteq \overline{W}_n \). Then there is an inclusion FI\textsubscript{W} \hookrightarrow FI\textsubscript{W}, and given any FI\textsubscript{W}–module \(V \) we
denote by Res\textsubscript{W}\textsubscript{W}V the FI\textsubscript{W}–module obtained by restricting the functor \(V \) to the sub-
category FI\textsubscript{W}.

Proposition 2.8. [Wil14, Proposition 3.22] (Restriction preserves finite generation).
For each family of Weyl groups \(W_n \subseteq \overline{W}_n \), the restriction Res\textsubscript{W}\textsubscript{W} of a finitely generated
FI\textsubscript{W}–module \(V \) is finitely generated as an FI\textsubscript{W}–module. Specifically,

1. Given an FI\textsubscript{BC}–module \(V \) finitely generated in degree \(\leq m \), Res\textsubscript{A}\textsubscript{BC} \(V \) is finitely gen-
erated as an FI\textsubscript{A}–module in degree \(\leq m \).
2. Given an FI\textsubscript{BC}–module \(V \) finitely generated in degree \(\leq m \), Res\textsubscript{D}\textsubscript{BC} \(V \) is finitely gen-
erated as an FI\textsubscript{D}–module in degree \(\leq m \).
3. Given an FI\textsubscript{D}–module \(V \) finitely generated in degree \(\leq m \), Res\textsubscript{A}\textsubscript{D} \(V \) is finitely generated
as an FI\textsubscript{A}–module in degree \(\leq (m + 1) \).

For categories FI\textsubscript{W} \hookrightarrow FI\textsubscript{W}, the restriction functor
\[\text{Res}\textsubscript{W} : \text{FI}\textsubscript{W}–\text{Mod} \longrightarrow \text{FI}\textsubscript{W}–\text{Mod} \]
has a left adjoint, the induction functor
\[\text{Ind}\textsubscript{W} : \text{FI}\textsubscript{W}–\text{Mod} \longrightarrow \text{FI}\textsubscript{W}–\text{Mod}. \]

We recall that the adjunction comes with a *unit* map, a natural transformation
\[\eta : \text{id} \longrightarrow (\text{Res}\textsubscript{W}\textsubscript{W} \circ \text{Ind}\textsubscript{W}\textsubscript{W}) \]
\[\eta_V : V \longrightarrow \text{Res}\textsubscript{W}\textsubscript{W}(\text{Ind}\textsubscript{W}\textsubscript{W} V) \]
and this map defines a natural bijection
\[
\begin{align*}
\left\{ \begin{array}{c}
\text{FI}\textsubscript{W}–\text{Module Maps} \\
V \longrightarrow \text{Res}\textsubscript{W}\textsubscript{W} U
\end{array} \right\} & \leftrightarrow \left\{ \begin{array}{c}
\text{FI}\textsubscript{W}–\text{Module Maps} \\
\text{Ind}\textsubscript{W}\textsubscript{W} V \longrightarrow U
\end{array} \right\}
\end{align*}
\]

We can describe the induced functors Ind\textsubscript{W}\textsubscript{W} \(V \) explicitly using the theory of Kan
extensions; see Mac Lane [ML98, Chapter 10.4].
Definition 2.9. (Induction). Given an FLW–module V, and an inclusion of categories \(\text{FI}_W \hookrightarrow \text{FI}_W \), we define the induced \(\text{FI}_W \)–module \(\text{Ind}_{FI}^W V \) by

\[
(\text{Ind}_{FI}^W V)_n = \bigoplus_{r \leq n} M_{FI}(r)_n \otimes_k V_r / \langle f \otimes g \ast (v) = (f \circ g) \otimes v \mid g \text{ is an FI}_W \text{ morphism} \rangle.
\]

with the action of \(h \in \text{Hom}_W(m, n) \) by \(h_+ : g \otimes v \mapsto (h \circ g) \otimes v \).

Given categories \(\text{FI}_W \subseteq \text{FI}_W \) and fixed \(m \geq 0 \), there is an isomorphism of \(\text{FI}_W \)–modules

\[
\text{Ind}_{FI}^W M_{FI}(m) \cong M_{FI}(m).
\]

A critical property of induction from \(\text{FI}_D \) to \(\text{FI}_{BC} \) was proven in [Wil14, Theorem 3.30].

Theorem 2.10. [Wil14, Theorem 3.30] \((V_n \cong (\text{Res}_{FI}^{BC} \text{Ind}_{FI}^{BC} V)_n \text{ for } n \text{ large}) \). Suppose \(V \) is an FI–module finitely generated in degree \(\leq m \). Then

\[
V_n \cong (\text{Res}_{FI}^{BC} \text{Ind}_{FI}^{BC} V)_n
\]

is an isomorphism of \(D_n \)–representations for all \(n > m \). In particular, every finitely generated FI–module \(V \) is, for \(n \) greater than its degree of generation, the restriction of an FI–module.

2.3.5 The weight of an FIW–module

Definition 2.11. (Weight). Let \(k \) be a field of characteristic zero. An FLA–module \(V \) over \(k \) has weight \(\leq d \) if every irreducible constituent \(V(\lambda)_n \) of \(V_n \) has \(|\lambda| \leq d \) for all \(n \geq 0 \). Similarly an \(\text{FI}_{BC} \)–module \(V \) over \(k \) has weight \(\leq d \) if for all \(n \) every irreducible constituent \(V(\lambda)_n = V(\lambda^+, \lambda^-)_n \) of \(V_n \) satisfies \(|\lambda^+| + |\lambda^-| \leq d \). Finally we say an \(\text{FI}_D \)–module \(V \) has weight \(\leq d \) if the \(\text{FI}_{BC} \)–module \(\text{Ind}_{FI}^{BC} V \) does.

An FIW–module \(V \) has finite weight if it is of weight \(\leq d \) for some integer \(d \geq 0 \). The minimum such \(d \) is the weight of \(V \), denoted weight(\(V \)). We say that the weight of a Young diagram \(\lambda = (\lambda_0, \lambda_1, \ldots, \lambda_\ell) \) is

\[
\lambda_1 + \cdots + \lambda_\ell = |\lambda| - \lambda_0.
\]

For example, the FIW–module \(M_W(m) \) has weight \(m \). Since the weight of an FIW–module \(V \) is an upper bound on the weight of all of its quotients, this implies that the weight of an FIW–module is bounded by its degree of generation.

Theorem 2.12. [Wil14, Theorem 4.4] (Degree of generation bounds weight). Suppose that \(V \) is an FIW–module over a field of characteristic zero. If \(V \) is finitely generated in degree \(\leq m \), then weight(\(V \)) \(\leq m \).
2.3.6 Shifted FI_W–modules, coinvariants, and stability degree

We define the shift and coinvariant functors on FI_W–modules, and use these operations to define the stability degree of an FI_W–module. The stability degree featured in the proof of representation stability for finitely generated FI_W–modules, and in Section 4 it will be used to bound the stable range of the associated character polynomials.

Definition 2.13. (Shifts \cap_a; Shifted FI_W–modules) For each $a \geq 0$, define the functor

$$\cap_a : \text{FI}_W \to \text{FI}_W$$

$$n \mapsto (n + a)$$

$$\{f : m \to n\} \mapsto \{\cap_a(f) : (m + a) \to (n + a)\}$$

where

$$\cap_a(f) \text{ maps } \{ d \mapsto d \text{ if } d \leq a, \}$$

$$\{(d + a) \mapsto (f(d) + a)\}.$$

Then for an FI_W–module $V : \text{FI}_W \to k$–Mod, we define the **shifted** FI_W–module $S_{+a}V$ by

$$S_{+a}V = V \circ \cap_a.$$

As a W_n–representation, $(S_{+a}V)_n$ is the restriction of V_{n+a} from W_{n+a} to the copy of W_n acting on $\{\pm (1 + a), \ldots, \pm (n + a)\} \subseteq (n + a).$

Definition 2.14. (Coinvariants functor τ; The graded $k[T]$–module $\Phi_a(V)$). We define the functor τ, as follows:

$$\tau : \text{FI}_W$–Mod $\to \text{FI}_W$–Mod

$$V \mapsto (\tau V)_n = (V_n)_{W_n} := k \otimes_{k[W_n]} V_n$$

The spaces $(\tau V)_n$ are the W_n–coinvariants of V_n, the largest quotient of V_n on which W_n acts trivially. Over characteristic zero it is isomorphic to its invariant subspace $(V_n)_{W_n}$.

Then, for fixed integer $a \geq 0$, we define

$$\Phi_a : \text{FI}_W$–Mod $\to k[T]$–Mod

$$V \mapsto \bigoplus_{n \geq 0} (\tau \circ S_{+a}V)_n = \bigoplus_{n \geq 0} (V_{n+a})_{W_{n+1}}$$

$\Phi_a(V)$ is a $k[T]$–module under the action of T by the maps $(V_{n+a})_{W_n} \to (V_{n+1+a})_{W_{n+1}}$ induced by the maps $(I_{n+a})_*: V_{n+a} \to V_{n+1+a}$.

22
Definition 2.15. (Injectivity degree; Surjectivity degree; Stability degree). An FI\(_W\)-module \(V\) has injectivity degree \(\leq s\) (respectively, surjectivity degree \(\leq s\)) if for all \(a \geq 0\) and \(n \geq s\), the map \(\Phi_a(V)_n \to \Phi_a(V)_{n+1}\) induced by \(T\) is injective (respectively, surjective). We call the minimum such \(s\) the injectivity degree (respectively, the surjectivity degree).

We say that \(V\) has stability degree \(\leq s\) if for every \(a \geq 0\) and \(n \geq s\), the map \(\Phi_a(V)_n \to \Phi_a(V)_{n+1}\) induced by \(T\) is an isomorphism of \(k\)-modules, equivalently, an isomorphism of \(\mathcal{W}_a\)-representations. Explicitly, \(V\) has stability degree \(\leq s\) if

\[
(V_{n+a})_{\mathcal{W}_n} \cong (V_{n+1+a})_{\mathcal{W}_{n+1}} \quad \text{for every } a \geq 0 \text{ and all } n \geq s.
\]

The stability degree is the minimum such \(s\).

2.3.7 Representation stability of finitely generated FI\(_W\)-modules

Using the concept of stability degree, we prove in [Wil14, Section 4.4] that for FI\(_W\)-modules over characteristic zero, finite generation is equivalent to uniform representation stability. Our first result:

Theorem 2.16. [Wil14, Theorem 4.26] (Finitely generated FI\(_W\)-modules are uniformly representation stable). Suppose that \(k\) is a characteristic zero field, and that \(V\) is an FI\(_{BC}\)-module with weight \(\leq d\) and stability degree \(N\). Then \(\{V_n\}\) is uniformly representation stable with respect to the maps \(\phi_n : V_n \to V_{n+1}\) induced by the natural inclusions \(I_n : n \mapsto (n+1)\). The sequences stabilizes for \(n \geq N + d\).

Our analysis of stability degree allows us to recast the bounds in terms of the generation and relation degree. Using properties of induction and restriction of FI\(_W\)-modules, we can extend these representation stability results to FI\(_D\)-modules.

Theorem 2.17. [Wil14, Theorem 4.27] (Finitely generated FI\(_W\)-modules are uniformly representation stable). Suppose that \(k\) is a field of characteristic zero, and \(\mathcal{W}_n\) is \(S_n\), \(D_n\) or \(B_n\). Let \(V\) be a finitely generated FI\(_W\)-module of weight \(\leq d\), generation degree \(\leq g\) and relation degree \(\leq r\); when \(\mathcal{W}_n\) is \(D_n\), take \(r\) instead to be an upper bound on the relation degree of \(\text{Ind}^{BC}_{D} V\). Then, \(\{V_n\}\) is uniformly representation stable with respect to the maps induced by the natural inclusions \(I_n : n \mapsto (n+1)\), stabilizing once \(n \geq \max(g,r) + d\); when \(\mathcal{W}_n\) is \(D_n\) and \(d = 0\) we need the additional condition that \(n \geq g + 1\).

The converse statement follows easily from “surjectivity” criterion for representation stability.

Theorem 2.18. [Wil14, Theorem 4.28] (Uniformly representation stable FI\(_W\)-modules are finitely generated). Suppose conversely that \(V\) is an FI\(_W\)-module, and that \(\{V_n, (I_n)\}_n\) is uniformly representation stable for \(n \geq N\). Then \(V\) is finitely generated in degree \(\leq N\).
2.3.8 Tensor products of FI_W–modules and graded FI_W–algebras

Definition 2.19. (Tensor product of FI_W–modules). Given FI_W–modules V and W, the tensor product $V \otimes W$ is the FI_W–module by $(V \otimes W)_n = V_n \otimes W_n$ with the diagonal action of the FI_W–morphisms.

Proposition 2.20. [Wil14, Proposition 5.2](Tensor products respect finite generation). If V and W are finitely generated FI_W–modules, then $V \otimes W$ is finitely generated. If V is generated in degree $\leq m$ and W in degree $\leq m'$, then $V \otimes W$ is generated in degree $\leq m + m'$. Over a field of characteristic zero, the weight of $(V \otimes W)$ is at most weight$(V) +$ weight(W).

Definition 2.21. (Graded FI_W–modules; Finite type; Slope). A graded FI_W–module $V = \bigoplus_i V^i$ is a functor from FI_W to the category of graded k–modules; each graded piece V^i is an FI_W–module. We say V has finite type if V^i is a finitely generated for all i.

Suppose k is a field of characteristic zero. Let V be a graded FI_W–module over k supported in nonnegative degrees. We define the slope of V to be $\leq m$ if for all i the FI_W–module V^i has weight $\leq m \cdot i$.

The tensor product of graded FI_W–modules $U = \bigoplus_i U^i$ and $W = \bigoplus_j W^j$ is the graded FI_W–module

$$U \otimes W = \bigoplus_{\ell} (U \otimes W)^{\ell} := \bigoplus_{\ell} \left(\bigoplus_{i+j=\ell} (U^i \otimes W^j) \right).$$

Suppose U and W are supported in nonnegative degrees with $U_0 \cong W_0 \cong M_W(0)$. If U and W have finite type, then $U \otimes W$ is a graded FI_W–module of finite type. Over characteristic zero, if U and W have slopes $\leq m$, then $U \otimes W$ will have slope $\leq m$.

Definition 2.22. (FI$_W$–algebras; FI$_W$–ideals; The free associative algebra on V). A (graded) FI_W–algebra $A = \bigoplus A^i$ is a functor from FI_W to the category of (graded) k–algebras. A sub–FI_W–module V generates A as an FI_W–algebra if V_n generates A_n as a k–algebra for all n.

Let A be a graded FI_W–algebra. An FI_W–ideal I of A is a graded sub–FI_W–algebra of A such that I_n is a homogeneous ideal in A_n for each n.

We define the free associative algebra on an FI_W–module V as the graded FI_W–algebra

$$k\langle V \rangle := \bigoplus_{j=0}^{\infty} V^j.$$

Any FI_W–algebra A generated by V admits a surjection of FI_W–algebras $k\langle V \rangle \twoheadrightarrow A$.

24
If \(V \) is supported in nonnegative degrees and has finite type, then so does \(A \).
Over a field of characteristic zero, if \(V \) has slope \(\leq m \) then so does \(A \).

Proposition 2.23. [Wil14, Proposition 5.12] Let \(A \) be an \(F_{I_W} \)–algebra generated by a graded \(F_{I_W} \)–module \(V \) concentrated in grade \(d \). If \(V \) is finitely generated in degree \(\leq m \), then the \(i \)th graded piece \(A^i \) is finitely generated in degree \(\leq \left(\frac{i}{d} \right) m \), and moreover if \(k \) is a characteristic zero field then weight \((A^i)_k \leq \left(\frac{i}{d} \right) \) weight \((V) \).

Definition 2.24. (Co–\(F_{I_W} \)–modules, Co–\(F_{I_W} \)–algebras, finite type). A graded co–\(F_{I_W} \)–module is a functor from the dual category \(F_{I_W}^{op} \) to the category of graded \(k \)–modules. A graded co–\(F_{I_W} \)–module is a functor from \(F_{I_W}^{op} \) to graded \(k \)–algebras.

A graded co–\(F_{I_W} \)–module \(V \) over a field \(k \) has finite type if its dual \(V^* \),
\[
V^*_n := \text{Hom}_k(V_n, k),
\]
has finite type. Similarly, \(V \) has slope \(\leq m \) if \(V^* \) does.

Proposition 2.25. [Wil14, Proposition 5.15] (Finite type co–\(F_{I_W} \)–modules generate co–\(F_{I_W} \)–algebras of finite type). Let \(k \) be a Noetherian commutative ring. Suppose that \(A \) is a graded co–\(F_{I_W} \)–algebra containing a graded co–\(F_{I_W} \)–module \(V \) supported in positive grades. If \(V \) has finite type, then the subalgebra \(B \) of \(A \) generated by \(V \) is a graded co–\(F_{I_W} \)–algebra of finite type. When \(k \) is a field of characteristic zero and \(V \) is a graded co–\(F_{I_W} \)–module of slope \(\leq m \), then \(B \) has slope \(\leq m \).

This concludes the summary of the vocabulary and basic results from [Wil14].

3 \(\text{FI}_{I_W}^\# \)–modules

Church–Ellenberg–Farb [CEF12, Definition 2.19] define \(\text{FI}_A^\# \)–modules, a class of sequences of \(S_n \)–representations which carry compatible \(\text{FI}_A \) and co–\(\text{FI}_A \)–module structures. We will give several characterizations of the analogous constructions in type \(B/C \). An \(\text{FI}_{BC}^\# \)–module structure imposes strong constraints on a sequence of \(B_n \)–representations; just as for \(\text{FI}_A^\# \)–modules [CEF12, Theorem 2.24]: the underlying \(\text{FI}_{BC} \)–module structure on these sequences must be of the form \(\bigoplus_r M_{BC}(U_r) \) for some set of \(B_r \)–representations \(U_r \).

Definition 3.1. For \(n \geq 0 \in \mathbb{Z} \), let \(n_0 := \{0, \pm 1, \pm 2, \ldots, \pm n\} \). We think of the digit 0 as a basepoint. Define \(\text{FI}_{BC}^\# \) to be the category with objects \(n_0 \) for \(n \geq 0 \in \mathbb{Z} \), and morphisms
\[
f : n_0 \rightarrow n_0 \quad \text{such that} \quad f(-a) = -f(a) \text{ for all } a \in n_0
\]
and
\[
|f^{-1}(b)| \leq 1 \text{ for } 1 \leq |b| \leq n.
\]
These morphisms are “injective away from zero”. Note that the conditions imply \(f(0) = 0 \).

We define \(\text{FI}_A^\# \) to be the subcategory with the same objects and morphisms preserving signs. In both cases, an \(\text{FI}_W^\# \)-module over a ring \(k \) is a functor from \(\text{FI}_W \) to the category of \(k \)-modules.

In both types A and B/C, the injective maps in \(\text{FI}_W^\# \) are precisely the \(\text{FI}_W \) morphisms. We call \(f \in \text{Hom}_{\text{FI}_W^\#}(m_0, n_0) \) a projection if \(|f^{-1}(\pm b)| = 1 \) for \(1 \leq b \leq n \); these projections are left inverses to the \(\text{FI}_W \) morphisms.

For a morphism \(f : m_0 \to n_0 \), we call \(|f^{-1}(\{\pm 1, \ldots, \pm n\})| \) the rank of \(f \).

This description of \(\text{FI}_W^\# \)-modules was suggested to us by Peter May. The category \(\text{FI}_A^\# \) appears independently in work by May and Merling studying the Segal equivariant infinite loop space machine [MM12], where the category is denoted \(\Pi \).

Remark 3.2. (A Category \(\text{FI}_D^\# \)). Unlike with \(\text{FI}_A \) and \(\text{FI}_{BC} \), we cannot introduce partial inverses to the morphisms in the category \(\text{FI}_D \) without also introducing additional automorphisms – and, in fact, generating the entire category \(\text{FI}_{BC}^\# \). It is not clear that we can create any satisfactory analogue of \(\text{FI}_\# \)-module theory in type D, since critical properties fail: the \(\text{FI}_D \)-module structure on \(M_D(m) \) does not extend to an \(\text{FI}_{BC}^\# \)-module structure.

An alternate characterizations of the categories \(\text{FI}_W^\# \)

In this section we relate the categories \(\text{FI}_W^\# \) back to the definition of \(\text{FI}_\# \) given by Church–Ellenberg–Farb [CEF12, Definition 2.19].

Remark 3.3. Church–Ellenberg–Farb [CEF12, Definition 2.19] defined \(\text{FI}_A^\# \) to be the category whose objects are finite sets, in which \(\text{Hom}_{\text{FI}_A^\#}(S, T) \) is the set of triples \((A, B, \phi) \) with \(A \) a subset of \(S \), \(B \) a subset of \(T \) and \(\phi : A \to B \) an isomorphism. The composition of two morphisms is given by composition of functions, where the domain is the largest set on which the composition is defined, and the codomain is its bijective image.

We can generalize this definition. We call a subset \(A \subseteq n \) symmetric if \(a \in A \iff -a \in A \).

Then we define \(\text{FI}_{BC}^\# \) to be the category whose objects are the finite sets \(n = \{\pm 1, \pm 2, \ldots, \pm n\} \), and whose morphisms \(\text{Hom}(m, n) \) are triples \((A, B, \phi) \) such that \(A \) is a symmetric subset of \(m \), \(B \) is a symmetric subset of \(n \), and \(\phi : A \to B \) is an injective map satisfying \(\phi(-a) = -\phi(a) \) for every \(a \in A \).

The subcategory \(\text{FI}_A^\# \) comprises all morphisms that preserve signs; this coincides with the definition of \(\text{FI}_A^\# \) given in [CEF12, Definition 2.19].
These definitions of the categories FI_{A^♯} and FI_{BC^♯} are equivalent to Definition 3.1. We identify the morphism \((A, B, \phi) \in \text{Hom}_{\text{FI}_{W^♯}}(m, n)\) with the map \(f : m_0 \to n_0\) defined by

\[
f : m_0 \to n_0 \quad j \mapsto \begin{cases}
\phi(j) & j \in A, \\
0 & j \notin A.
\end{cases}
\]

Conversely, we can identify \(f : m_0 \to n_0\) with a triple \((A, B, \phi)\) by taking \(A = f^{-1}(\{\pm 1, \ldots, \pm n\})\), \(B = f(A)\), and \(\phi = f|_{A}\). One can check that these identifications of morphisms are consistent with the composition rules, and give an isomorphism of categories.

Examples of FI_{W^♯}–modules

We prove in Proposition 3.4 and Corollary 3.5 that FI_{BC}–modules of the form \(M_{BC}(m)\) or \(M_{BC}(U)\) have FI_{BC^♯}–module structures.

Proposition 3.4. (\(M_{WV}(a)\) is an FI_{W^♯}–module). Let \(W_n\) be \(S_n\) or \(B_n\). For \(a \geq 0\), the FI_{W}–module structure on \(M_{WV}(a)\) extends to an FI_{W^♯}–structure.

Proof of Proposition 3.4. By Definition 2.3, \(M_{WV}(a) = \text{Span}_k \{e_s \mid s \in \text{Hom}_{FI_{W}}(a, m)\}\).

Take any FI_{W^♯}–morphism \(f : m_0 \to n_0\). We define

\[
f \cdot e_s = \begin{cases}
e^f & \text{if } 0 \notin f(s(a)), \\
0 & \text{otherwise}.
\end{cases}
\]

The condition \(0 \notin f(s(a))\) is the statement that \(f \circ s\) is an injective map \(a \to n\). Given \(g : n_0 \to p_0\), we note that

\[0 \in (g \circ f)(s(a)) \iff 0 \in g((f \circ s)(a));\]

this implies that the action \((g \circ f) \cdot e_s = g \cdot (f \cdot e_s)\) is functorial.

Corollary 3.5. (\(M_{WV}(U)\) is an FI_{W^♯}–module). Let \(W_n\) be \(S_n\) or \(B_n\). Given a \(W_a\)–representation \(U\), the FI_{W}–module

\[M_{WV}(U) := M_{WV}(a) \otimes_{k[W_a]} U\]

has the structure of an FI_{W^♯}–module.

Remark 3.6. We note the proof of Proposition 3.4 does not work in type \(D\), as the space \(M_D(m)_m \subseteq M_{BC}(m)_m\) is not closed under the action of action of the FI_{BC^♯}–morphisms.
3.1 Classification of FI_{BC^\sharp}-modules

The structure of an FI_{BC^\sharp}-module is highly constrained. In Corollary 3.5 we saw that $M_{BC}(U)$ is an FI_{BC^\sharp}-module. Just as Church–Ellenberg–Farb proved with FI_A^\sharp-modules [CEF12, Theorem 2.24], we will now find that all FI_{BC^\sharp}-modules are sums of FI_{BC^\sharp}-modules of this form. For the following theorem, recall the definition of FB_W–Mod from Definition 2.3.

Theorem 3.7. (FI$_W^\sharp$–modules take the form $\bigoplus_{a=0}^{\infty} M_W(U_a)$). Let W_n be S_n or B_n. Every FI$_W^\sharp$–module V is of the form

$$V = \bigoplus_{a=0}^{\infty} M_W(U_a), \quad U_a \text{ a representation of } W_a \text{ (possibly } U_a = 0),$$

and moreover that the maps

$$M_W(-) : \text{FB}_W$–Mod \rightarrow \text{FI}_W$–Mod and \quad H_0(-) : \text{FI}_W$–Mod \rightarrow \text{FB}_W$–Mod

define an equivalence of categories.

We remark that Theorem 3.7, and in particular the result in type A proven by Church–Ellenberg–Farb [CEF12, Theorem 2.24], parallels earlier work of Pirashvili [Pir00a, Pir00b] on Γ–modules, functors from the category of finite based sets and (not necessarily injective) based maps.

This theorem is proved for FI$_A$ in [CEF12, Theorem 2.24], and their proof adapts readily to the general case.

Church–Ellenberg–Farb proceed by induction. Assume V is an FI$_A^\sharp$–module, and fix n such that $V_m = 0$ for all $m < n$ (possibly $n = 1$). They define a particular idempotent endomorphism of FI_A^\sharp–modules $E : V \rightarrow V$, and prove the resultant decomposition

$$V = EV \oplus \ker(E) \cong M_A(V_n) \oplus \ker(E).$$

Their same proof carries through exactly in the case FI_{BC^\sharp}–modules if we redefine the endomorphism E as follows, for $m \geq n$,

$$E_m : V_m \rightarrow V_m$$

$$E_m = \sum_{S \subseteq m, |S| = n} I_S \quad \text{where} \quad I_S(j) = \begin{cases} j & \text{if } j \in S, \\ 0 & \text{otherwise} \end{cases} \in \text{Hom}_{\text{FI}_{BC^\sharp}}(m_0, m_0).$$
In the notation of Remark 3.3, \(I_S = (S, S, \text{identity}) \). Again we conclude

\[V \cong M_{BC}(V_n) \oplus \ker(E) \]

with \(\ker(E) \) vanishing in degree \(n \), and the desired decomposition follows by induction on \(n \).

Church–Ellenberg–Farb further argue that, since maps \(F : V \to V' \) of \(\text{FI}_A\# \)-modules commute with \(E \) and preserves this decomposition, the map \(M_A(V_n) \to M_A(V'_n) \) must be induced by some map of \(S_n \)-representations \(V_n \to V'_n \). Their arguments hold for \(\text{FI}_{BC} \)-modules, and imply the equivalence of the categories \(\text{FB}_{BC} \text{-Mod} \) and \(\text{FI}_{BC} \# \text{-Mod} \).

Corollary 3.8. Let \(\mathcal{W}_n \) be \(S_n \) or \(B_n \). With \(V \) an \(\text{FI}_{\mathcal{W}} \# \)-module as above, any sub–\(\text{FI}_{\mathcal{W}} \# \)-module of \(V \) is of the form \(\bigoplus_{a=0}^{\infty} M_{\mathcal{W}}(U'_a) \) for some \(\mathcal{W}_a \)-representations \(U'_a \subseteq U_a \) (possibly zero).

Corollary 3.9. Let \(\mathcal{W}_n \) be \(S_n \) or \(B_n \). If \(V \) is an \(\text{FI}_{\mathcal{W}} \)-module generated in degree \(\leq d \), then any sub–\(\text{FI}_{\mathcal{W}} \# \)-module of \(V \) is also generated in degree \(\leq d \).

Corollary 3.10. Let \(\mathcal{W}_n \) be \(S_n \) or \(B_n \). An \(\text{FI}_{\mathcal{W}} \# \)-module \(V \) has injectivity degree \(0 \). If \(V \) is generated in degree \(\leq d \), then \(V \) has stability degree \(\leq d \), as do its sub–\(\text{FI}_{\mathcal{W}} \)-submodules.

Proof of Corollary 3.10. Let \(U_m \) be any \(\mathcal{W}_m \)-representation. In [Wil14, Example 3.14] we saw that \(M_{\mathcal{W}}(U_m) \) is generated in degree \(m \). In [Wil14, Proposition 4.17] we further saw that \(M_{\mathcal{W}}(U_m) \) has injectivity degree \(0 \) and surjectivity degree \(m \). By assumption that \(V \) is generated in degree \(\leq d \), we may decompose \(V \) into a sum \(V = \bigoplus_{m=0}^{d} M_{\mathcal{W}}(U_m) \) and the result follows. \(\square \)

Corollary 3.11. If \(V \) is an \(\text{FI}_{BC} \# \)-module over characteristic zero, generated in degree \(d \). Then \(\{ V_n \} \) is uniformly representation stable in degree \(\leq 2d \).

Proof of Corollary 3.11. Any such \(\text{FI}_{BC} \# \)-module has weight \(\leq d \) by Theorem 2.12, and stability degree \(\leq d \) by Corollary 3.10. The conclusion follows from Theorem 2.16. \(\square \)

Corollary 3.12. Let \(\mathcal{W}_n \) be \(S_n \) or \(B_n \). An \(\text{FI}_{\mathcal{W}} \# \)-module \(V \) is completely determined by the sequence of \(\mathcal{W}_n \)-representations \(\{ V_n \} \), equivalently (over characteristic zero) by the sequence of characters \(\{ \chi_n \} \).

Proof of Corollary 3.12. We can construct \(H_0(V) \) inductively from the sequence \(\{ V_n \} \) of \(\mathcal{W}_n \)-representations:

\[H_0(V)_0 = V_0 \quad \text{and} \quad H_0(V)_n = V_n / \text{span} \bigoplus_{k<n} M_{\mathcal{W}}(H_0(V)_k) \]

The \(\text{FI}_{\mathcal{W}} \# \)-module structure on \(V \) is determined by the identification \(V \cong M_{\mathcal{W}}(H_0(V)) \). \(\square \)
Corollary 3.13. If k is a field, and V an FI_{BC}^{d}–module k. Then

V is finitely generated in degree $\leq d$ \iff $\dim_k(V_n) = O(n^d)$

\iff $\dim_k(V_n) = P(n)$ for a polynomial $P \in \mathbb{Q}[T]$ of degree at most d

If k is a commutative ring, then an FI_{BC}^{d}–module V over k is finitely generated in degree $\leq d$ if and only if V_n is generated by $O(n^d)$ elements.

Proof of Corollary 3.13. The statements follow from Theorem 3.7 and the same argument used to prove [CEF12, Corollary 2.27]. In type B/C, the polynomial P is determined by the formula

$$\dim_k M_{BC}(U)_n = \binom{n}{m} \dim_k U$$

for a B_m–representation U. \hfill \Box

4 The character polynomials

4.1 Character polynomials for the symmetric groups

A major result of Church–Ellenberg–Farb is that, given a finitely generated FI_A–module over a field of characteristic zero, the characters of the S_n–representations V_n have a particularly nice form. They are, for n sufficiently large, given by a character polynomial (independent of n), as we now define.

Definition 4.1. (Character Polynomials for S_n). Let k be a characteristic zero field. For $r \geq 1$ and $n \geq 0$, let X_r be the class function on S_n, defined by

$$X_r(s) := \text{the number of } r\text{–cycles in the cycle type of } s.$$

For fixed n, the monomials in the functions X_1, \ldots, X_n span the space of class functions on S_n, subject to some relations – for example, relations imposed by the fact that any element’s cycle lengths sum to n. As functions on the disjoint union $\bigsqcup_{n=0}^\infty S_n$, however, the functions X_r are algebraically independent, and define a polynomial ring $k[X_1, X_2, \ldots]$. We call elements of this ring the character polynomials of the symmetric groups, and define the total degree of a character polynomial by assigning $\deg(X_r) = r$.

Theorem 4.2. [CEF12, Theorem 2.67] (Polynomiality of characters for S_n). Let k be a field of characteristic zero, and let V be a finitely generated FI_A–module with weight $\leq d$ and stability degree $\leq s$. There exists a unique polynomial $P_V \in k[X_1, X_2, \ldots]$ such that

$$\chi_{V_n}(\sigma) = P_V(\sigma)$$

for all $n \geq s + d$ and all $\sigma \in S_n$.

The polynomial P_V has degree at most d. By setting $F_V(n) = P_V(n,0,...,0)$ we have:

$$\dim_k(V_n) = \chi_V(id) = F_V(n) \quad \text{for all } n \geq s + d.$$

If V is an FI_{A^\geq}–module then the above equalities hold for all $n \geq 0$.

Background and formulas for character polynomials of the symmetric groups. Church–Ellenberg–Farb [CEF12] prove these theorems using the classical result that the character of the irreducible representations $V(\lambda)_n$, written here in the notation defined in Section 2.1, is given by a character polynomial P^λ independent of n. These character polynomials were described by Murnaghan in 1951 [Mur51] and by Specht in 1960 [Spe60]. This independence of the characters from n was known to Murnaghan in 1937 [Mur37].

Formulas for the character polynomial P^λ associated to the irreducible representations $V(\lambda)_n$ are given in Macdonald’s book [Mac79]. In 2009, new formulas were published by Garsia and Goupil [GG09], which they used to study the combinatorics of Kronecker coefficients. To state these formulas, we use the following notation:

Let λ be a partition of n. We define the length of λ, $\ell(\lambda) :=$ the number of parts of λ.

For $r \geq 1$, we write $n_r(\lambda) :=$ the number of parts of λ of length r.

We further define the integer z_λ so that \[
\frac{n!}{z_\lambda} \text{ is the number of elements in } S_n \text{ of cycle type } \lambda.\]

Explicitly,

$$z_\lambda = \prod_r n_r(\lambda) n_r(\lambda)!$$

We write χ^λ to mean the character of the irreducible S_n–representation V_λ. We define $\chi^\emptyset := 1$. If χ is any class function on S_n, and ρ a partition of n, then we write χ_ρ to mean the value of χ on elements of cycle type ρ.

Definition 4.3. (Generalized Binomial Coefficients). Let ρ be a partition of m. Following Macdonald [Mac79, I.7.13(a)], we define generalized binomial coefficients:

$$\left(\frac{X}{\rho} \right) := \prod_r \left(\frac{X_r}{n_r(\rho)} \right) = \prod_r \frac{X_r(X_r - 1) \cdots (X_r - n_r(\rho) + 1)}{n_r(\rho)!},$$

For example,

$$\left(\frac{X}{(3,2,2,1)} \right) := \left(\frac{X_3}{1} \right) \left(\frac{X_2}{2} \right) \left(\frac{X_1}{1} \right) = X_3 \frac{X_2(X_2 - 1)}{2} X_1 = \frac{1}{2} X_3 X_2^2 X_1 - \frac{1}{2} X_3 X_2 X_1$$
Remark 4.4. (Indicator Functions for the Conjugacy Classes of S_m) Given a partition λ of m, and $s \in S_m$, note that the generalized binomial coefficient

$$\binom{X}{\lambda}(s) = \begin{cases} 1 & \text{if } s \text{ has cycle type } \lambda, \\ 0 & \text{otherwise.} \end{cases}$$

This polynomial’s restriction to $S_m \subseteq \bigsqcup_{n \geq 0} S_n$ is an indicator function for the conjugacy class of cycle type λ. Polynomials of this form give a convenient basis for $k[X_1, X_2, \ldots]$.

Since the binomial coefficient in an indeterminate X

$$\binom{X}{m} = \frac{X(X-1)(X-2) \cdots (X-m+1)}{m!}$$

is a polynomial in X of degree m, the generalized binomial coefficient $\binom{X}{\lambda}$ is a polynomial of total degree $\sum r \cdot n_r(\lambda) = m$ in $k[X_1, X_2, \ldots]$.

Proposition 4.5. ([Mac79, I.7.14])

For $\lambda \vdash m$, a formula for the character P^λ of the irreducible S_n–representation $V(\lambda)_n$ is given as follows:

$$P^\lambda = \sum_{\text{Partitions } \rho, \sigma \mid |\rho| + |\sigma| = |\lambda|} (-1)^{\ell(\sigma)} \chi^\lambda_{(\rho, \sigma)} \binom{X}{\rho}. $$

By Remark 4.4, this is a character polynomial of degree $|\lambda| = m$.

4.2 Character polynomials in type B/C and D

We can analogously define character polynomials for the hyperoctahedral group B_n and the even-signed permutation groups D_n. Our goal is to prove that the characters of a finitely generated FI$_W$–module are equal (for n sufficiently large) to a character polynomial. A summary of the main result:

Theorem 4.6. (Summary: Finitely generated FI$_W$–modules have character polynomials). Let V be an FI$_W$–module over characteristic zero finitely generated in degree $\leq d$. Let χ_V denote the character of the W_n–representation V_n. Then there exists a unique character polynomial F_V of degree at most d such that $F_V(\sigma) = \chi_V(\sigma)$ for all $\sigma \in W_n$, for all n sufficiently large.
The full statement of this result in type B/C and D, including bounds on the stable range, is given in Theorem 4.16 in Section 4.2. To this end, we will first develop the theory in type B/C, and from there we can use our methods of inducing \(\text{FI}_D \)-modules to \(\text{FI}_{BC} \) to recover results in type D.

Recall from Section 2.1.2 that the conjugacy classes for \(B_n \) are classified by double partitions \((\alpha, \beta)\) of \(n \), designating the signed cycle type of each element. Given a character (or class function) \(\chi \) of a \(B_n \)-representation, we will write \(\chi(\alpha, \beta) \) to denote the value of \(\chi \) on elements of signed cycle type \((\alpha, \beta)\).

Definition 4.7. (Character Polynomials for \(B_n \)). For \(r \geq 1 \) and \(n \geq 0 \), let \(X_r \) and \(Y_r \) be the class functions on \(B_n \) defined by

\[
X_r(w) = \text{the number of positive } r\text{-cycles in the cycle type of } w.
Y_r(w) = \text{the number of negative } r\text{-cycles in the cycle type of } w.
\]

Again, these functions form a polynomial ring \(k[X_1, Y_1, X_2, Y_2, \ldots] \) where we designate \(\deg(X_r) = \deg(Y_r) = r \).

Example 4.8. We saw in Example 1.6 that \(V_n = V((n-1), (1)) \cong k^n \), the canonical \(B_n \)-representation by signed permutation matrices, has characters \(\chi^V = X_1 - Y_1 \) for all \(n \). Similarly, one can compute that the characters of \(V_n = \wedge^2 V((n-1), (1)) \) are

\[
\chi^{\wedge^2 V} = \frac{1}{2} X_1(X_1 - 1) + \frac{1}{2} Y_1(Y_1 - 1) - X_1 Y_1 - X_2 + Y_2 \quad \text{for all } n,
\]

and that the characters of \(V_n = \text{Sym}^2 V((n-1), (1)) \) are

\[
\chi^{\text{Sym}^2 V} = \frac{1}{2} X_1(X_1 + 1) + \frac{1}{2} Y_1(Y_1 + 1) - X_1 Y_1 + X_2 - Y_2 \quad \text{for all } n.
\]

Remark 4.9. (Indicator Functions for the Conjugacy Classes of \(B_m \)). Given a double partition \((\lambda, \nu)\) of \(m \), and \(w \in B_m \), note that the degree \(m \) character polynomial

\[
\begin{pmatrix} X \cr \lambda \end{pmatrix} \begin{pmatrix} Y \cr \nu \end{pmatrix} (w) = \left\{ \begin{array}{ll} 1 & \text{if } w \text{ has signed cycle type } (\lambda, \nu), \\ 0 & \text{otherwise.} \end{array} \right.
\]

Again \(\begin{pmatrix} X \cr \lambda \end{pmatrix} \begin{pmatrix} Y \cr \nu \end{pmatrix} \) is a polynomial of degree \(\sum r \cdot n_r(\lambda) + \sum r \cdot n_r(\nu) = m \) that is an indicator function on \(B_m \) of the signed conjugacy class \((\lambda, \nu)\).

Remark 4.10. (Restricting Characters to \(S_n \subseteq B_n \)). The symmetric group \(S_n \) forms the subgroup of \(B_n \) generated by the (necessarily positive) cycles that preserve signs. Thus, if \(V \) is a \(B_n \)-representation with character \(\chi^V \) given by some character polynomial \(P_V \in k[X_1, Y_1, X_2, Y_2, \ldots] \), the character for \(\text{Res}^B_n V \) is given by the element in \(k[X_1, X_2, \ldots] \) obtained by evaluating each variable \(Y_r \) in \(P_V \) at 0.
4.2.1 The character of \(V(\lambda, \mu)_n \) is independent of \(n \)

Recall from Section 2.1.2 that, given a double partition \((\lambda, \nu)\) of \(d\) with \(\nu \vdash m\), then \(V(\lambda, \nu)_n\) denotes the irreducible \(B_n\)-representation associated to the double partition \((\lambda[n-m], \nu)\).

Theorem 4.11. (The character of \(V(\lambda, \mu)_n \) is independent of \(n \)). If \((\lambda, \nu)\) is a double partition of \(d\), then there is a character polynomial \(P^{(\lambda, \nu)}\) of degree at most \(d\) equal to the character of the irreducible \(B_n\)-representations \(V(\lambda, \nu)_n\) for all \(n\).

Explicitly, \(P^{(\lambda, \nu)}\) is given as follows. Let \(m = |\nu|\), and define \(\mu\) so that \(\nu = \mu[m]\); for \(\nu = \emptyset\) take \(\mu = \emptyset\). Then

\[
P^{(\lambda, \nu)} = \sum_{(\alpha, \beta)} \sum_{\text{Partitions } \rho, \sigma \atop |\alpha| + |\beta| = |\nu|} \sum_{\text{Partitions } \xi, \eta \atop |\xi| + |\eta| = |\lambda|} (-1)^{\ell(\beta)} \left(\frac{(-1)^{\ell(\sigma)} \chi^\mu_{(\rho, \sigma)}}{z_\sigma} \right) \left(\frac{(-1)^{\ell(\eta)} \chi^\lambda_{(\xi, \eta)}}{z_\eta} \right)
\]

\[
\quad \prod_r \left(\frac{n_r(\alpha) + n_r(\beta)}{n_r(\rho)} \right) \left(\frac{X_r - n_r(\alpha) + Y_r - n_r(\beta)}{n_r(\xi)} \right) \left(\frac{X_r}{n_r(\alpha)} \right) \left(\frac{Y_r}{n_r(\beta)} \right)
\]

For example,

\[
P^{(\emptyset, \emptyset)} = (X_1 - Y_1)(X_1 + Y_1 - 2) \quad \text{and} \quad P^{(\emptyset, \emptyset')} = \left(\frac{X_1}{2} \right) + \left(\frac{Y_1}{2} \right) - X_2 - X_1Y_1 + Y_2
\]

We will prove Theorem 4.11 in four steps. Our first step, Lemma 4.12, is to prove the result for representations of the form \(V(\lambda, \emptyset)_n\). In the second step, Lemma 4.13, we produce a formula for characters of representations \(V(\emptyset, \lambda[m])\). Our third step, Lemma 4.15, is to compute the character of an induced representation of the form \(\text{Ind}_{B_m}^{B_n \times B_{n-m}} U \boxtimes U'\), and the final step will be to derive the formula in Theorem 4.11.

Lemma 4.12. (Step 1: The character of \(V(\lambda, \emptyset)_n \)). Let \(\lambda\) be a partition of \(m\). Then, for each \(n\), the character of \(B_n\)-representation \(V(\lambda, \emptyset)_n\) is given by the character polynomial \(P^{(\lambda, 0)}\)

\[
P^{(\lambda, 0)} = \sum_{\text{Partitions } \rho, \sigma \atop |\rho| + |\sigma| = |\lambda|} \frac{(-1)^{\ell(\sigma)} \chi^\lambda_{(\rho, \sigma)}}{z_\sigma} \left(\frac{X + Y}{\rho} \right)
\]

\[
:= \sum_{\text{Partitions } \rho, \sigma \atop |\rho| + |\sigma| = |\lambda|} \frac{(-1)^{\ell(\sigma)} \chi^\lambda_{(\rho, \sigma)}}{z_\sigma} \prod_r \left(\frac{X_r + Y_r}{n_r(\rho)} \right)
\]

34
Proof of Lemma 4.12. As described in Section 2.1.2, the B_n–representations $V(\lambda, \emptyset)_n$ are by definition the pullback of the S_n–representation $V(\lambda)_n$ under the natural surjection $B_n \twoheadrightarrow S_n$. This map takes positive and negative r-cycles in B_n to r-cycles in S_n; a signed permutation of signed cycle type (μ, ν) is mapped to a permutation of type $\mu \cup \nu$. It follows that a hyperoctahedral character polynomial for $V(\lambda, \emptyset)_n$ can be obtained from the symmetric character polynomial for $V(\lambda)_n$ by replacing each X_r with the sum $X_r + Y_r$. The formula therefore follows from Macdonald’s formula, Proposition 4.5.

Lemma 4.13. (Step 2: The character of $V(\emptyset, \lambda[n])$). Let n be fixed, and consider a partition $\lambda[n]$ of n. Then the character $\chi(\emptyset, \lambda[n])$ of the B_n–representation $V(\emptyset, \lambda[n])$ takes the following value on B_n elements of signed cycle type (α, β):

$$\chi(\emptyset, \lambda[n]) = (\alpha, \beta)\chi(\emptyset, \lambda[n]) = (-1)^{\ell(\beta)} P(\lambda, 0)_{(\alpha, \beta)}.$$

Remark 4.14. We note that this formula for the character $V(\emptyset, \lambda[n])$ is not a B_n character polynomial, since the coefficient $(-1)^{\ell(\beta)}$ depends on the cycle type (α, β).

Proof of Lemma 4.13. Recall from Section 2.1.2 that $\varepsilon : B_n \to B_n/D_n \cong \{\pm 1\}$ is the character mapping an element $w \in B_n$ to -1 precisely when w reverses an odd number of signs. Since positive cycles reverse an even number of signs, and negative cycles reverse an odd number, the character ε takes the value $(-1)^{\ell(\beta)}$ on elements of signed cycle type (α, β).

By definition,

$$V(\emptyset, \lambda[n]) = V(\lambda[n], \emptyset) \otimes \varepsilon = V(\lambda, \emptyset)_n \otimes \varepsilon$$

and so the formula follows from Lemma 4.13.

Lemma 4.15. (Step 3: The character of Ind$_{B_n \times B_{n-m}}^{B_n} U \boxtimes U'$). Suppose that U is a B_m–representation with character χ^U, and that U' is a B_{n-m}–representation, with character $\chi^{U'}$. Then the character $\chi^{(U, U')}$ of the induced B_n–representation Ind$_{B_n \times B_{n-m}}^{B_n} U \boxtimes U'$ is given by:

$$\chi^{(U, U')}(\rho, \sigma) = \left(\sum_{(\alpha, \beta) \mid |\alpha| + |\beta| = m} \chi_U^{(\alpha, \beta)} \chi^{U'}_{(\delta, \gamma)} \left(\begin{array}{c} X \\ \alpha \end{array} \right) \left(\begin{array}{c} Y \\ \beta \end{array} \right) \right)(\rho, \sigma)$$

where (δ, γ) is the double partition of $(n-m)$ such that $(\rho, \sigma) = (\alpha \cup \delta, \beta \cup \gamma)$. It is well-defined, since $\left(\begin{array}{c} X \\ \alpha \end{array} \right) \left(\begin{array}{c} Y \\ \beta \end{array} \right) \right)(\rho, \sigma)$ will vanish unless such a decomposition of (ρ, σ) exists.

35
We note that Lemma 4.15 holds when \(k \) is \(\mathbb{Z} \) or any field.

Proof of Lemma 4.15. Let \(w \in (B_n \times B_{n-m}) \), and let \(p_m \) and \(p_{n-m} \) denote the projections of \(w \) onto \(B_n \) and \(B_{n-m} \), respectively. The character of the \((B_n \times B_{n-m})\)-representation \(U \boxtimes U' \) is

\[
\chi^{U \boxtimes U'} = \chi^U(p_m(w)) \cdot \chi^{U'}(p_{n-m}(w)).
\]

The character of the induced representation \(\text{Ind}_{B_n \times B_{n-m}}^{B_n \times B_{n-m}} U \boxtimes U' \) is

\[
\chi^{U,U'}(w) = \sum_{\{\text{cosets } C \mid w-C-C\}} \chi^{U \boxtimes U'}(s^{-1}ws) \sum_{\{\text{cosets } C \mid w-C-C\}} \chi^U(p_m(s^{-1}ws)) \cdot \chi^{U'}(p_{n-m}(s^{-1}ws))
\]

summed over all cosets \(C \) in \(B_n/(B_n \times B_{n-m}) \) that are stabilized by \(w \), equivalently, those cosets \(C \) such that \(s^{-1}ws \in (B_n \times B_{n-m}) \) for any \(s \in C \).

The cosets \(B_n/(B_n \times B_{n-m}) \) correspond to the orbit of the sets

\[
\{-1, 1\}, \ldots, \{-m, m\} \quad \text{and} \quad \{-(m+1), (m+1)\}, \ldots, \{-n, n\}
\]

under the action of \(B_n \); they are indexed by all partitions of \(\{-1, 1\}, \{-2, 2\}, \ldots, \{-n, n\} \) into a set of \(m \) blocks and a set of \((n - m) \) blocks.

An element \(w \in B_n \) can be conjugated into \((B_n \times B_{n-m})\) precisely when its positive and negative cycles can be partitioned into a set of cycles of total length \(m \), and a set of cycles of total length \(n - m \). If we fix a double partition \((\alpha, \beta)\) of \(m \), then the cycles of \(w \) can be factored into an element \(w_m \) of cycle type \((\alpha, \beta)\) and its complement \(w_{n-m} \) in the following number of ways (possibly 0):

\[
\begin{pmatrix} X \alpha \\ Y \beta \end{pmatrix}(w) := \begin{pmatrix} X_1(w) \\ n_1(\alpha) \end{pmatrix} \begin{pmatrix} X_2(w) \\ n_2(\alpha) \end{pmatrix} \cdots \begin{pmatrix} X_m(w) \\ n_m(\alpha) \end{pmatrix} \begin{pmatrix} Y_1(w) \\ n_1(\beta) \end{pmatrix} \begin{pmatrix} Y_2(w) \\ n_2(\beta) \end{pmatrix} \cdots \begin{pmatrix} Y_m(w) \\ n_m(\beta) \end{pmatrix}.
\]

Each such factorization of \(w \) corresponds to a coset \(C \in B_n/(B_n \times B_{n-m}) \) that is stabilized by \(w \). For any representative \(s \in C \), \(p_m(s^{-1}ws) \) has signed cycle type \((\alpha, \beta)\).

Thus, if we denote the signed cycle type of \(w_{n-m} \) by \((\delta, \gamma)\), we conclude

\[
\chi^{U,U'}(w) = \sum_{|\alpha| + |\beta| = m} \chi^U_{(\alpha, \beta)} \chi^{U'}_{(\delta, \gamma)} \frac{X \alpha}{|\alpha|} \left(\frac{Y \beta}{|\beta|} \right)(w). \quad \Box
\]

36
Proof of Theorem 4.11. (Step 4: The Character of $V(\lambda, \nu)_n$). Let (λ, ν) be a double partition of d, with $|\nu| = m$ and $|\lambda| = (d - m)$. From the construction of the irreducible representations of B_n described in Section 2.1.2,

$$V(\lambda, \nu)_n = \text{Ind}_{B_{n-m} \times B_m}^{B_n} V(\lambda, \varnothing)_n \boxtimes V(\varnothing, \nu).$$

We wish to compute a character polynomial $P(\lambda, \nu)$ which gives the character for $V(\lambda, \nu)_n$, for each n.

By Lemma 4.15,

$$\chi^{(\lambda[n], \nu)}(w) = \left(\sum_{(\alpha, \beta) \in \text{Partitions } |\alpha| + |\beta| = |\nu|} \chi^{(\varnothing, \nu)}(\lambda[n-m], \varnothing) \chi(\delta, \gamma) \left(\begin{array}{c} X \\ \alpha \\ \beta \end{array} \right) \right)(w)$$

with (δ, γ) the double partition of $(n - m)$ such that $(\alpha \cup \delta, \beta \cup \gamma)$ is the signed cycle type of w.

We write $\nu = \mu[m]$, where μ is the partition obtained from ν by discarding the largest part; thus, by Lemmas 4.13 and 4.12,

$$\chi^{(\varnothing, \mu[m])}(\alpha, \beta) = (-1)^{\ell(\beta)} P(\mu, 0)(\alpha, \beta)$$

$$= (-1)^{\ell(\beta)} \sum_{\text{Partitions } \rho, \sigma \ , \ |\rho| + |\sigma| = |\mu|} \frac{(-1)^{\ell(\rho \cup \sigma)}}{z_{\sigma}} \chi^{\mu}(\rho \cup \sigma) \left(\begin{array}{c} X + Y \\ \rho \end{array} \right)(\alpha, \beta)$$

$$= (-1)^{\ell(\beta)} \sum_{\text{Partitions } \rho, \sigma \ , \ |\rho| + |\sigma| = |\mu|} \frac{(-1)^{\ell(\rho \cup \sigma)}}{z_{\sigma}} \chi^{\mu}(\rho \cup \sigma) \prod_{r} \left(n_r(\alpha) + n_r(\beta) \right)$$

Moreover, since for each r we have

$$n_r(\delta) = X_r(w) - n_r(\alpha) \quad \text{and} \quad n_r(\gamma) = Y_r(w) - n_r(\beta),$$

we can use Lemma 4.12 to compute:

$$\chi^{(\lambda[n-m], \varnothing)}(\delta, \gamma) = P(\lambda, 0)(\delta, \gamma)$$

$$= \sum_{\text{Partitions } \xi, \eta \ , \ |\xi| + |\eta| = |\lambda|} \frac{(-1)^{\ell(\eta)}}{z_{\eta}} \chi^{\lambda}(\xi \cup \eta) \prod_{r} \left(X_r + Y_r \right)(\delta, \gamma)$$

$$= \sum_{\text{Partitions } \xi, \eta \ , \ |\xi| + |\eta| = |\lambda|} \frac{(-1)^{\ell(\eta)}}{z_{\eta}} \chi^{\lambda}(\xi \cup \eta) \prod_{r} \left(X_r - n_r(\alpha) + Y_r - n_r(\beta) \right)(w)$$
Putting these together,

\[\chi^{(\lambda[n-m],\nu)}(w) = \sum_{(\alpha,\beta)} \chi^{(\alpha,\nu)}(\lambda[n-m],\gamma) \chi^{(X,\alpha)}(\beta,\gamma)(w) \]

\[= \sum_{(\alpha,\beta)} \chi^{(X,\alpha)}(\beta,\gamma) (-1)^{\ell(\beta)} \sum_{\text{Partitions } \rho,\sigma} \frac{(-1)^{\ell(\sigma)} \chi^\mu(\rho \cup \sigma)}{z_\sigma} \prod_r \left(\frac{n_r(\alpha) + n_r(\beta)}{n_r(\rho)} \right) \]

which gives the desired formula.

Note that the degree of \(P(\lambda,\nu) \)

\[\deg(P(\lambda,\nu)) \leq \left(|\alpha| + |\beta| + \max_{\text{Partitions } \xi,\eta} |\xi| \right) \]

\[= (|\nu| + |\lambda|) \]

\[= d \]

so \(\deg(P(\lambda,\nu)) \) is at most the size of the double partition \((\lambda, \nu)\), as claimed.

\[\square \]

4.3 Finite generation and character polynomials

We can now use Theorem 4.11 to prove the existence of character polynomials for finitely generated \(\text{FI}_{BC} \)-modules in Theorem 4.16. As a consequence of Theorems 4.2 and 4.16, we can determine a number of constraints on the structure of finitely generated \(\text{FI}_W \)-modules.

Theorem 4.16. (Characters of finitely generated \(\text{FI}_W \)-modules are eventually polynomial). Let \(k \) be a field of characteristic zero. Suppose that \(V \) is a finitely generated \(\text{FI}_{BC} \)-module with weight \(\leq d \) and stability degree \(\leq s \), or, alternatively, suppose that \(V \) is a finitely generated \(\text{FI}_D \)-module with weight \(\leq d \) such that \(\text{Ind}_{BC}^{BC} V \) has stability degree \(\leq s \). In either case, there is a unique polynomial

\[F_V \in k[X_1,Y_1,X_2,Y_2,\ldots], \]

independent of \(n \), such that the character of \(\mathcal{W}_n \) on \(V_n \) is given by \(F_V \) for all \(n \geq s + d \). The polynomial \(F_V \) has degree \(\leq d \), with \(\deg(X_i) = \deg(Y_i) = i \).
We remark that, by Theorem 2.12, \(d \) is at most the degree of generation of \(V \).

\textbf{Proof of Theorem 4.16.} Assume first that \(V \) is a finitely generated \(\text{FI}_{BC} \)-module.

Recall that the class functions \(X_i, Y_i \) are algebraically independent as functions on the disjoint union of all hyperoctahedral groups \(\coprod_{n \geq 0} B_n \). The uniqueness of a character polynomial \(F_V \) therefore follows from the general fact that any two (multi-variate) polynomials that agree on all but finitely many integer points are necessarily equal. We turn to proving existence of the character polynomial \(F_V \).

By Theorem 2.16, for \(n \geq s + d \), \(V_n \) has a decomposition

\[V_n = \bigoplus c_\lambda V(\lambda)_n \]

where by assumption \(c_\lambda \) is only nonzero for \(|\lambda| \leq d \). Thus for \(n \geq s + d \) the characters \(V_n \) are given by a character polynomial of degree \(\leq d \) by Theorem 4.11.

We will now use this result to prove the theorem for type D. That \(V \) is an \(\text{FI}_{D} \)-module of weight \(\leq d \) means by definition that \(\text{Ind}^{BC}_D V \) is an \(\text{FI}_{BC} \)-module of weight \(\leq d \), and \(\text{Ind}^{BC}_D V \) moreover has stability degree \(\leq s \) by assumption. Hence the \(B_n \)-representations \((\text{Ind}^{BC}_D V)_n \) are given by a unique character polynomial \(F_V \) for all \(n \geq s + d \). Moreover, if \(V \) is generated in degree \(\leq m \), then

\[V_n \cong (\text{Res}^{BC}_D \text{Ind}^{BC}_D V)_n \quad \text{for all } n \geq m + 1 \]

by Theorem 2.10, and so the character of \(V_n \) is given by the restriction of \(F_V \) to \(D_n \) in this range. The theorem follows.

\textbf{Corollary 4.17. (Polynomial growth of dimension for finitely generated \(\text{FI}_{W} \)-modules).} Given a finitely generated \(\text{FI}_{W} \)-module \(V \) over a field of characteristic zero with associated character polynomial \(F_V \), the dimension \(\dim(V_n) \) of \(V_n \) is given by \(F_V(n,0,0,0,...) \) in the stable range. In particular, if \(V \) is finitely generated in degree \(\leq d \), then \(\dim(V_n) \) is eventually a polynomial in \(n \) of degree at most \(d \).

\textbf{Corollary 4.18. (Characters only depend on short cycles).} Suppose that \(k \) is a field of characteristic zero, and let \(V \) be a finitely generated \(\text{FI}_{W} \)-module. Let \(\chi_n \) denote the character of the \(B_n \)-representation \(V_n \). Then there exists some positive integer \(d \leq \text{weight}(V) \), independent of \(n \), such that for every \(w \in W_n \), the value \(\chi_n(w) \) depends only on cycles in \(w \) of length at most \(d \).

\textbf{Remark 4.19. (Character polynomials of \(\text{co-} \text{FI}_{W} \)-modules).} Suppose that \(V \) is a \(\text{co-} \text{FI}_{W} \)-module over a field of characteristic 0. We define its dual \(V^* \) to be the \(\text{FI}_{W} \)-module with \((V^*)_n = (V_n)^* \). Suppose \(V^* \) is a finitely generated \(\text{FI}_{W} \)-module of weight \(\leq d \) and stability degree \(\leq s \), and that \(F_V \) is the associated character polynomial. Since \((V^*)_n \cong (V_n) \) (see Geck–Pfeiffer [GP00, Corollary 3.2.14]), the characters of \(\chi_{V_n} = F_V \) in the range \(n \geq s + d \).
4.4 Polynomial dimension over positive characteristic

Church–Ellenberg–Farb–Nagpal proved that the dimensions of finitely generated FI_A–modules over a field k are eventually polynomial even when k has positive characteristic [CEFN14, Theorem 1.2]. We use their result to prove the same for all FI_W–modules.

Theorem 4.20. (Polynomial growth of dimension over arbitrary fields). Let k be any field, and let V be a finitely generated FI_W–module over k. Then there exists an integer-valued polynomial $P(T) \in \mathbb{Q}[T]$ such that $\dim_k(V_n) = P(n)$ for all n sufficiently large.

We note that, in contrast to the result over characteristic zero, Theorem 4.20 does not come with bounds on the degree of $P(T)$ or the range of n-values for which the equality holds.

Proof of Theorem 4.20. When V is a finitely generated FI_A–module, the result follows from [CEFN14, Theorem 1.2]. If V is a finitely generated FI_{BC} or FI_D–module, then by Proposition 2.8 its restriction to FI_A is finitely generated, and the result again follows from [CEFN14, Theorem 1.2].

4.5 The character polynomials of FI_W–modules

In this section we compute the character polynomials of the FI_{BC}–modules $M_{BC}(U)$, Proposition 4.21. We conclude that the character polynomial of an FI_{BC}–module V must equal χ_V, for all values of n. The formula given in Proposition 4.21 is moreover useful for computing character polynomials of FI_{BC}–modules, such as in our applications in Sections 5.1 and 5.2. We end this section with Proposition 4.23, the character polynomials of the FI_W–modules $M_W(m)$ for each family W_n.

Proposition 4.21. (The Character of $M_{BC}(U)_n$). Let k be a field of characteristic zero. Let U be a representation of B_m with character χ^U. Then the character $\chi^{M_{BC}(U)_n}$ is, for each n, given by the character polynomial P^U:

$$P^U(w) = \left(\sum_{(\alpha,\beta)} \chi^U_{(\alpha,\beta)} \begin{pmatrix} X_1(w) & \cdots & X_m(w) \\ Y_1(w) & \cdots & Y_m(w) \end{pmatrix} \right)$$

$$:= \sum_{(\alpha,\beta)} \chi^U_{(\alpha,\beta)} \begin{pmatrix} X_1(n_1(\alpha)) & \cdots & X_m(n_1(\alpha)) \\ Y_1(n_1(\beta)) & \cdots & Y_m(n_1(\beta)) \end{pmatrix} \cdot \begin{pmatrix} X_2(n_2(\alpha)) & \cdots & X_m(n_2(\alpha)) \\ Y_2(n_2(\beta)) & \cdots & Y_m(n_2(\beta)) \end{pmatrix} \cdots \begin{pmatrix} X_m(n_m(\alpha)) & \cdots & X_m(n_m(\alpha)) \\ Y_m(n_m(\beta)) & \cdots & Y_m(n_m(\beta)) \end{pmatrix}$$
Proof of Proposition 4.21. Since $M_{BC}(U)_n = \text{Ind}_{B_n \times B_{n-m}}^{B_n} U \otimes k$, with k the trivial B_{n-m}-representation, the result follows from Lemma 4.15.

Corollary 4.22. Let V be an FI_{BC}^\sharp-module V over a field of characteristic zero. Then if V is finitely generated in degree $\leq d$, the characters of V_n are equal to a unique character polynomial $F_V \in k[X_1, Y_1, X_2, Y_2, \ldots]$ of degree at most d, with equality for every value of $n \geq 0$. The dimensions of V_n are given by a polynomial of degree at most d

$$\dim_k(V_n) = F_V(n, 0, 0, \ldots) \quad \text{for every value of } n.$$

We can find explicit formulas for the FI_W-modules $M_W(m)$.

Proposition 4.23. Let k be \mathbb{Z} or a field of characteristic zero. When W_n is S_n or B_n, the character polynomials of $M_W(m)$ are:

$$\chi^{M_{A}(m)} = m! \left(X_1 \atop m \right) \quad \chi^{M_{BC}(m)} = 2^m m! \left(X_1 \atop m \right).$$

When W_n is D_n, $M_{D}(m)$ is also given by a character polynomial for $n > m$:

$$\chi^{M_{D}(m)} = 2^m m! \left(X_1 \atop m \right) \quad \text{when } n > m.$$

When $n = m$, the character of $M_{D}(m)_m$ takes the value $2^{m-1} m!$ on the identity and vanishes otherwise.

Proof of Proposition 4.23. Take as basis for $M_W(m)_n$ the set $S = \{ e_f \mid f \in \text{Hom}_{FI_W}(m, n) \}$.

An element $w \in W_n$ will permute these basis elements; the trace of w is the size of its fixed set in S. A basis element e_f is fixed by w only if w fixes its image $f(m) \subseteq n$ pointwise; conversely for every choice of m (positive) 1-cycles

$$(a_1)(-a_1), (a_2)(-a_2), \ldots, (a_m)(-a_m)$$

in w, w will fix all basis elements e_f for which the image of f is

$$f(m) = \{ \pm a_1, \ldots, \pm a_m \} \subseteq n.$$

When W_n is S_n, there are $m!$ such maps. When W_n is B_n, there are $2^m m!$ such maps. When W_n is D_n, there are $2^m m!$ such maps whenever $n > m$; when $n = m$ there are only $2^{m-1} m!$, since in this case each endomorphism f must reverse an even number of signs. The formulas follow. \qed
Example 4.24. Using the formulas for the characters of $M_A(m)$ and $M_{BC}(m)$ in Proposition 4.23 and a standard binomial–multinomial identity, one can decompose the characters of $M_A(m) \otimes M_A(p)$ and $M_{BC}(m) \otimes M_{BC}(p)$. By Corollary 3.12, these characters completely determine the FI$_W$-structure:

\[
M_A(m) \otimes M_A(p) = \bigoplus_{d=0}^{m} \frac{m! p!}{(m+p-d)!} \binom{m+p-d}{d,m-d,p-d} M_A(m+p-d)
\]

\[
M_{BC}(m) \otimes M_{BC}(p) = \bigoplus_{d=0}^{m} \frac{2^d m! p!}{(m+p-d)!} \binom{m+p-d}{d,m-d,p-d} M_{BC}(m+p-d)
\]

5 Some applications

FI$_W$-modules arise naturally in numerous areas of mathematics. In this section we give some applications of the theory developed in this paper to the cohomology of the group of pure string motions and the cohomology of the complements of the Weyl groups’ reflecting hyperplanes.

5.1 The cohomology of the group of pure string motions

In [Wil12], we proved that the cohomology of the pure string motion groups $P\Sigma_n$ is uniformly representation stable with respect to a natural action of the hyperoctahedral group.

The group Σ_n of string motions is a generalization of the braid group. It is defined as the group of motions of n smoothly embedded, oriented, unlinked, unknotted circles in \mathbb{R}^3; see for example Brownstein–Lee [BL93] for a complete definition.

Hatcher–Wahl [HW10] proved that the string motion groups are (integrally) homologically stable, as a particular instance of their homologically stability results for mapping class groups of 3–manifolds. Brendle–Hatcher [BH11] realized the string motion group as the fundamental groups of certain configuration spaces of rigid circles. These configuration spaces are not $K(\pi,1)$’s, and Kupers proved that the spaces are themselves homological stable [Kup13].

The work of Dahm (see Dahm [Dah62] or Goldsmith [Gol81]) identifies Σ_n with the symmetric automorphism group of the free group F_n on n letters x_1, \ldots, x_n, the subgroup of automorphisms generated by the following elements:

\[
\alpha_{ij} = \left\{ \begin{array}{c}
 x_i \mapsto x_j x_i x_j^{-1} \\
 x_\ell \mapsto x_\ell \quad (\ell \neq i)
\end{array} \right. \quad \tau_i = \left\{ \begin{array}{c}
 x_i \mapsto x_{i+1} \\
 x_{i+1} \mapsto x_i \\
 x_\ell \mapsto x_\ell \quad (\ell \neq i, i+1)
\end{array} \right. \quad \rho_i = \left\{ \begin{array}{c}
 x_i \mapsto x_i^{-1} \\
 x_\ell \mapsto x_\ell \quad (\ell \neq i)
\end{array} \right.
\]
The subgroup \(P\Sigma_n = \langle \alpha_{i,j} \rangle \subseteq \Sigma_n \) is the group of pure symmetric automorphisms (or pure string motions), the analogue of the pure braid group.

The central theorem of [Wil12]:

Theorem 5.1. [Wil12, Theorem 6.1] For each fixed \(m \geq 0 \), the sequence of \(B_n \)-representations \(\{H^m(P\Sigma_n; \mathbb{Q})\}_n \) is uniformly representation stable with respect to the maps

\[
\phi_n : H^m(P\Sigma_n; \mathbb{Q}) \to H^m(P\Sigma_{n+1}; \mathbb{Q})
\]

induced by the ‘forgetful’ map \(P\Sigma_{n+1} \to P\Sigma_n \). The sequence stabilizes once \(n \geq 4m \).

The theory of \(\text{FI}_{BC} \)-modules developed here allows for a significantly simplified proof of this result, and new perspective on the structure of these cohomology groups.

The integral homology group \(H_1(P\Sigma_n; \mathbb{Z}) = P\Sigma_n/[P\Sigma_n, P\Sigma_n] \) is the free abelian group \(\mathbb{Z}[\alpha_{i,j} | i \neq j] \), and the cohomology ring is generated by the dual elements \(\alpha^*_{i,j} \). A presentation for the integral cohomology was conjectured by Brownstein and Lee [BL93, Conjecture 4.6] and proven by Jensen, McCammond, and Meier [JMM06, Theorem 6.7] (see also Griffin [Gri13b, Section 4]). Jensen–McCammond–Meier study the action of \(P\Sigma_n/\text{Inn}(F_n) \) on the MacCullough–Miller complex [MM96] to obtain Theorem 5.2.

Theorem 5.2. [JMM06, Theorem 6.7]. The cohomology ring \(H^*(P\Sigma_n; \mathbb{Z}) \) is the exterior algebra generated by the degree-one classes \(\alpha^*_{i,j} \), with \(i, j \in [n] \), \(i \neq j \), modulo the relations

\[
\begin{align*}
(1) \quad & \alpha^*_{i,j} \wedge \alpha^*_{j,i} = 0 \\
(2) \quad & \alpha^*_{i,j} \wedge \alpha^*_{j,i} - \alpha^*_{i,j} \wedge \alpha^*_{\ell,i} + \alpha^*_{i,j} \wedge \alpha^*_{\ell,i} = 0
\end{align*}
\]

In [Wil12], to prove that the sequence \(H^m(P\Sigma_n; \mathbb{Q}) \) is uniformly representation stable, we use a combinatorial description of the cohomology groups given by Jensen–McCammond–Meier [JMM06] and an orbit–stabilizer argument to decompose each group into a sum of induced representation of a particular form. We then use a result of Church–Farb [CF13, Theorem 4.6] (inspired by the work of Hemmer [Hem10, Theorem 2.4]), to deduce from the combinatorics of the branching rules that these induced representations are uniformly representation stable.

Here, we can recover uniform representation stability for \(H^m(P\Sigma_\bullet; \mathbb{Q}) \) as a \(B_n \)-representation almost immediately by demonstrating that it is finitely generated as an \(\text{FI}_{BC} \)-module, as follows.

Theorem 5.3. Let \(k \) be \(\mathbb{Z} \) or \(\mathbb{Q} \). The cohomology rings \(H^*(P\Sigma_\bullet, k) \) form an \(\text{FI}_{BC} \)-module, and a graded \(\text{FI}_{BC} \)-algebra of finite type, with \(H^m(P\Sigma_\bullet, k) \) finitely generated in degree \(\leq 2m \). In particular the \(\text{FI}_{BC} \)-algebra \(H^*(P\Sigma_\bullet, \mathbb{Q}) \) has slope \(2 \).
Proof of Theorem 5.3. The map induced by an FI\(_{BC}^+\) morphism \(f : m_0 \to n_0\) on \(H^1(\Sigma_n, \mathbb{Z})\) is:

\[
f_* : H^1(\Sigma_m; k) \to H^1(\Sigma_n; k)
\]

\[
\alpha_{i,j} \mapsto \begin{cases}
\alpha_{[f(i)]; [f(j)]}^* & \text{if } f(i) \neq 0, f(j) > 0 \\
-\alpha_{[f(i)]; [f(j)]}^* & \text{if } f(i) \neq 0, f(j) < 0 \\
0, & \text{if } f(i) = 0 \text{ or } f(j) = 0
\end{cases}
\]

It is straightforward to verify that \(f_*\) extends to an algebra map on \(H^*(\Sigma_n, k)\), and that this action is functorial.

The FI\(_BC\)–module \(H^1(\Sigma_n; k)\) is generated in degree 2 by \(\alpha_{1,2}\), and \(V_* = H^*(\Sigma_n; k)\) is generated as an FI\(_BC\)–algebra by \(H^1(\Sigma_n; k)\). We conclude from Proposition 2.23 that \(V_m\) is finitely generated in degree \(\leq 2m\), and that \(H^*(\Sigma_n; \mathbb{Q})\) is a graded FI\(_BC\)–algebra of slope \(\leq 2\).

Propositions 2.8(1) and (2) imply that \(V_*\) restricts to a graded FI\(_A\) and FI\(_D\)–algebra of finite type, with \(V_m\) generated in degree \(\leq 2m\).

Since \(V_m = H^m(\Sigma_n; k)\) is a FI\(_BC\)–module generated in degree \(\leq 2m\), by Corollary 3.11 the sequence is uniformly representation stable in degree \(4m\), as \(B_n\)–representations or as \(S_n\)–representations. \(\square\)

Corollary 5.4. For each \(m\), the sequence \(\{H^m(\Sigma_n; \mathbb{Q})\}_n\) of representations of \(B_n\) (or \(S_n\)) is uniformly representation stable, stabilizing once \(n \geq 4m\).

Remark 5.5. We only defined representation stability for FI\(_W\)–modules over fields of characteristic zero (Definition 2.1). However, the presentation for the groups \(H^m(\Sigma_n; \mathbb{Z})\) given by Jensen-McCammond–Meier shows that these groups are free abelian ([JMM06, Theorem 6.7], see Theorem 5.2), and we can identify \(H^m(\Sigma_n; \mathbb{Z})\) with the integer span of the basis \(\alpha_{n,i,j_1}^* \wedge \cdots \wedge \alpha_{n,i,j_m}^*\) for \(H^m(\Sigma_n; \mathbb{Q})\). Hence we get a version of representation stability for the integral groups \(H^m(\Sigma_n; \mathbb{Z})\) by redefining the subrepresentation \(V(\lambda)_n\) as the integral Specht module associated to \(\lambda[n]\).

Theorem 4.16 implies that the characters of the sequence \(\{H^m(\Sigma_n; \mathbb{Q})\}_n\) are given by a character polynomial of degree \(\leq 2m\). As in the above remark, since the integral cohomology is free abelian, these same character polynomials give characters for the integral cohomology.

Corollary 5.6. Let \(k\) be \(\mathbb{Z}\) or \(\mathbb{Q}\). Fix an integer \(m \geq 0\). The characters of the sequence of \(B_n\)–representations \(\{H^m(\Sigma_n; k)\}_n\) are given, for all values of \(n\), by a unique character polynomial of degree \(\leq 2m\).
This concludes a simpler proof of [Wil12, Theorems 6.1 and 6.4]. We have moreover extended the results of [Wil12] to integer coefficients, and obtained polynomial results on the characters.

For small values of \(m\), we can compute the \(\text{FI}_{BC}^\sharp\) and \(\text{FI}_A^\sharp\)-module structures and character polynomials of \(H^m(P\Sigma_n; \mathbb{Z})\) by computing traces on an explicit basis for \(H^m(P\Sigma_n; \mathbb{Z}), n = 1, \ldots, 2m\), and using Proposition 4.21. The result is, as an \(\text{FI}_{BC}^\sharp\)-module,

\[
H^1(P\Sigma_n; \mathbb{Z}) = M_{BC}(\emptyset, \emptyset) \quad \chi_{H^1(P\Sigma_n; \mathbb{Z})} = 2\binom{X_1}{2} - 2\binom{Y_1}{2}
\]

In degree 2:

\[
H^2(P\Sigma_n; \mathbb{Z}) = M_{BC}(\emptyset, \emptyset) \oplus M_{BC}(\emptyset, \emptyset) \oplus M_{BC}(\emptyset, \emptyset) \oplus M_{BC}(\emptyset, \emptyset) \oplus M_{BC}(\emptyset, \emptyset) \\
\quad \oplus M_{BC}(\emptyset, \emptyset) \oplus M_{BC}(\emptyset, \emptyset)
\]

\[
\chi_{H^2(P\Sigma_n; \mathbb{Z})} = 12\binom{X_1}{4} + 12\binom{Y_1}{4} + 9\binom{X_1}{3} + 9\binom{Y_1}{3} - 4\binom{X_2}{2} + 4\binom{Y_2}{2} \\
\quad - 4\binom{X_1}{2}\binom{Y_1}{2} - X_1X_2 - X_1Y_2 - X_2Y_1 - Y_1Y_2 - \binom{X_1}{2}Y_1 - X_1\binom{Y_1}{2}
\]

By restricting to the action of the symmetric groups we find, as an \(\text{FI}_A^\sharp\)-module,

\[
H^1(P\Sigma_n; \mathbb{Z}) = M_A(\emptyset) \oplus M_A(\emptyset) \quad \chi_{H^1(P\Sigma_n; \mathbb{Z})} = 2\binom{X_1}{2}
\]

\[
H^2(P\Sigma_n; \mathbb{Z}) = M_A(\emptyset)^2 \oplus M_A(\emptyset)^3 \oplus M_A(\emptyset) \oplus M_A(\emptyset)^2 \oplus M_A(\emptyset)^2
\]

\[
\chi_{H^2(P\Sigma_n; \mathbb{Z})} = 12\binom{X_1}{4} + 9\binom{X_1}{3} - X_1X_2 - 4\binom{X_2}{2}
\]

Problem 5.7. For each \(m\), compute the \(B_n\) character polynomial of \(H^m(P\Sigma_n; \mathbb{Z})\), and compute its decomposition as an \(\text{FI}_{BC}^\sharp\)-module into a sum of induced representations \(M_{BC}(U)\).

5.1.1 Generalizations

There are several families of groups that naturally generalize the (pure) braid groups and (pure) symmetric automorphism groups, which we outline below. With each
family, there are open questions concerning whether the cohomology rings admit the structure of a finite type FI_W or $\text{FI}_W^\#$–algebra, and how this structure reflects the structure of the groups.

Partially symmetric automorphisms. The group Σ_n^k of partially symmetric automorphisms of the free group $F_n = \langle x_1, \ldots, x_n \rangle$ are those automorphisms that send each of the first k generators x_1, \ldots, x_k to a conjugate of one of the elements $x_1, x_1^{-1}, \ldots, x_k, x_k^{-1}$. We impose no restrictions on the images of x_{k+1}, \ldots, x_n. The pure partially symmetric automorphism group $P\Sigma_n^k$ is the subgroup of Σ_n^k of automorphisms that send each generator x_j with $1 \leq j \leq k$ to a conjugate of itself. We note that

$$\Sigma_n^k = \Sigma_n, \quad P\Sigma_n^k = P\Sigma_n, \quad \text{and} \quad P\Sigma_n^0 = \Sigma_n^0 = \text{Aut}(F_n);$$

these groups interpolate between the (pure) symmetric automorphism group and the full automorphism group of F_n.

The groups $P\Sigma_n^k$ were studied by Jensen–Wahl [JW04] for their relationships to mapping class groups. Jensen–Wahl have computed a presentation and established certain homological properties of the groups. Bux–Charney–Vogtmann [BCV09] determined that the image of the group $P\Sigma_n^k$ in $\text{Out}(F_n)$ has virtual cohomological dimension $2n - k - 2$ when $k \neq 0$. They exhibit a proper action of these outer automorphism groups on a $(2n - k - 2)$–dimensional deformation retract of a certain contractible subcomplex of the spine of Culler–Vogtmann’s Outer space; see Charney–Vogtmann [CV09] for details.

Zaremsky [Zar14] proved that both families $P\Sigma_n^k$ and Σ_n^k are, for fixed k, rationally homologically stable in n. He proved moreover that for fixed n, the groups Σ_{n+k} are rationally homologically stable in k. Zaremsky obtains these results by studying the groups’ actions on subcomplexes of the spine of Auter space. He uses methods from discrete Morse theory to prove that the filtered pieces of certain subcomplexes are highly connected, extending techniques of McEwen–Zaremsky [MZ12].

Given these results, it would be interesting to determine whether there is a FI_{BC} or $\text{FI}_{BC^\#}$–module structure on the rational cohomology groups of $P\Sigma_n^k$ as a sequence in k, and, if so, to determine the associated stable decompositions and character polynomials.

Symmetric automorphisms of free products. Given a group G, let G^{*n} denote its n-fold free product

$$G^{*n} := G * G * \cdots * G, \quad \text{n copies}$$

The automorphism group $\text{Aut}(G^{*n})$ contains a copy of the symmetric group S_n.

46
which permutes the n free factors. These permutations normalize the following subgroups of automorphisms; see for example Griffin [Gri13a, Gri13b] for details.

- The Fouxe-Rabinovitch group $\text{FR}(G^n) \subseteq \text{Aut}(G^n)$ generated by partial conjugations of G^n. A partial conjugation is an automorphism that conjugates the i^{th} free factor G by some g in the j^{th} factor G with $i \neq j$. All factors other than the i^{th} are fixed.

- The inner automorphisms of each factor $\prod_n \text{Inn}(G)$

- All automorphisms of each factor $\prod_n \text{Aut}(G)$

- The Whitehead automorphism group $\text{Wh}(G^n) := \text{FR}(G^n) \times \prod_n \text{Inn}(G)$

- The pure automorphism group $\text{PAut}(G^n) := \text{FR}(G^n) \times \prod_n \text{Aut}(G)$

The symmetric automorphism group of G^n is the group

$$\Sigma\text{Aut}(G^n) := (\text{PAut}(G^n) \rtimes S_n).$$

We note that

$$P\Sigma_n \cong \text{FR}(Z^n) \cong \text{Wh}(Z^n) \quad \text{and} \quad \Sigma_n \cong \Sigma\text{Aut}(Z^n).$$

Griffin constructs a classifying space for $\text{FR}(G^n)$, which he defines as a moduli space of cactus products, and alternatively characterizes combinatorially in terms of diagonal complexes comprised of forest posets. Using this classifying space he computes the homology of the groups $\text{FR}(G^n)$, $\text{PAut}(G^n)$, and $\Sigma\text{Aut}(G^n)$.

Collinet–Djament–Griffin [CDG12] have proven that if G does not contain Z as a free factor, the sequences $\text{Aut}(G^n)$ and $\Sigma\text{Aut}(G^n)$ are (integrally) homologically stable, stabilizing in degree i once $n \geq 2i + 2$. Their work complements the results of Hatcher [Hat95] for $G \cong Z$ and extends results of Hatcher–Wahl [HW10] for several important classes of groups G coming from low-dimensional topology. Collinet–Djament–Griffin prove their results using the theory of functor homology, and an analysis of the action of $\text{FR}(G^n)$ on a variation of the MacCullough–Miller complex [MM96] due to Chen–Glover–Jensen [CGJ05].

We would be interested to better understand the relationship between the work done on the groups $\text{FR}(G^n)$, $\text{Wh}(G^n)$, and $\text{PAut}(G^n)$ and the theory of FI_A–modules.
Virtual and flat braid groups. The (pure) virtual braid group and the (pure) flat braid group are generalizations of the (pure) braid group that allow virtual or flat crossings of strands. This additional structure was introduced by Kauffman [Kau99], motivated by the study of knots in thickened higher-genus surfaces and the combinatorial theory of Gauss codes. Virtual and flat crossings are distinct from the under– and over–crossings in familiar knot and braid diagrams, and each have their own admissible Redemeister moves. For details see for example Kauffman [Kau99, Kau00], Vershinin [Ver01], Kauffman–Lambropoulou [KL04], Bardakov [Bar04], and Bartholdi–Enriquez–Etingof–Rains [BEER06].

In [Lee13], Peter Lee analyzes the cohomology of the pure virtual braid groups and the pure flat braid groups as representations of the symmetric groups. He proves that, for both families, the rational cohomology groups are uniformly representation stable [Lee13, Corollaries 1 and 5], and his work suggests that these cohomology sequences are in fact FI–A♯–algebras. His results raise questions about the structure of these FI–A♯–algebras and their associated character polynomials, and the structure of the integral cohomology groups.

5.2 The cohomology of hyperplane complements

Let \(W_n \) be the Weyl group in type \(A_{n-1}, B_n/C_n \), or \(D_n \), and consider the canonical action of \(W_n \) on \(\mathbb{C}^n \) by (signed) permutation matrices. Let \(\mathcal{A}(n) \) be the set of hyperplanes fixed by the (complexified) reflections of \(W_n \), and let \(\mathcal{M}_W = \mathcal{M}_W(n) \) be their complement

\[
\mathcal{M}_W(n) := \mathbb{C}^n \setminus \bigcup_{H \in \mathcal{A}(n)} H.
\]

The group \(W_n \) permutes the set of hyperplanes, and acts on \(\mathcal{M}_W \). For each family \(\{W_n\} \), the hyperplane complements can be described explicitly:

\[
\begin{align*}
\mathcal{M}_A(n) &= \{(v_1, \ldots, v_n) \in \mathbb{C}^n \mid v_i \neq v_j \text{ for } i \neq j \} \\
\mathcal{M}_D(n) &= \{(v_1, \ldots, v_n) \in \mathbb{C}^n \mid v_i \neq \pm v_j \text{ for } i \neq j \} \\
\mathcal{M}_{BC}(n) &= \{(v_1, \ldots, v_n) \in \mathbb{C}^n \mid v_i \neq \pm v_j \text{ for } i \neq j; v_i \neq 0 \text{ for all } i \}
\end{align*}
\]

We note that \(\mathcal{M}_{BC}(n) \subseteq \mathcal{M}_D(n) \subseteq \mathcal{M}_A(n) \).

The hyperplane complement \(\mathcal{M}_A(n) \) is the ordered \(n \)–point configuration space of the plane \(\mathbb{C} \); it is an Eilenberg–Mac Lane space with fundamental group the pure braid group on \(n \) strands. Arnol’d computed its integral cohomology in 1969 [Arn69]. Its quotient \(\mathcal{M}_A(n)/S_n \) is an Eilenberg–Mac Lane space with fundamental group the braid group on \(n \) strands. Brieskorn showed that \(\mathcal{M}_{BC}(n) \) and \(\mathcal{M}_D(n) \) and their quotients \(\mathcal{M}_{BC}(n)/B_n \) and \(\mathcal{M}_D(n)/S_n \) are also Eilenberg–Mac Lane spaces.
Define a set of hyperplanes \(H \) of a general arrangement of complex hyperplanes containing the origin. Let \(E(\mathcal{A}) \) to be the complex exterior algebra \(E(\mathcal{A}) := \bigwedge \{ e_H \mid H \in \mathcal{A} \} \) and let \(I(\mathcal{A}) \subseteq E(\mathcal{A}) \) be the ideal

\[
I(\mathcal{A}) := \left(\sum_{t=1}^{p} (-1)^t e_{H_1} \cdots e_{H_t} \cdots e_{H_p} \mid H_1, \ldots, H_p \text{ dependent} \right)
\]

Orlik–Solomon proved that \(H^*(\mathcal{M}_W, \mathbb{C}) \) is isomorphic to \(A(\mathcal{A}) := E(\mathcal{A})/I(\mathcal{A}) \) as a graded algebra [OS80, Theorem 5.2]. Their work implies that \(H^*(\mathcal{M}_W, \mathbb{C}) \cong A(\mathcal{A}) \) as a graded \(\mathbb{C}[W_n] \)-module under the \(W_n \)-action \(w \cdot e_H = e_{wH} \).

The structure of \(H^*(\mathcal{M}_A(n), \mathbb{C}) \) as an \(S_n \)-representation is described by Lehrer–Solomon [LS86], and the structure of the \(B_n \)-representations \(H^*(\mathcal{M}_{BC}(n), \mathbb{C}) \) is described by Douglass [Dou92]. Lehrer–Solomon and Douglass give decompositions of the \(W_n \)-representations \(H^*(\mathcal{M}_W(n), \mathbb{C}) \) in type \(A \) and \(B/C \), respectively, as sums of certain explicitly described induced representations. Lehrer–Solomon conjectured that, as they prove in type \(A \), the cohomology groups \(H^m(\mathcal{M}_W, \mathbb{C}) \) decompose into a sum of induced one-dimensional representations of centralizers, summed over the set of \(W_n \) conjugacy classes [LS86, Conjecture 1.6]. Recent progress has been made on this conjecture; see Douglass–Pfeiffer–Röhrle [DPR12].

Church and Farb prove that, for each degree \(m \), the sequence \(H^m(\mathcal{M}_A(n), \mathbb{Q}) \) is an uniformly representation stable sequence of \(S_n \)-representations [CF13, Theorem 4.1]. Church–Ellenberg–Farb further prove that \(H^m(\mathcal{M}_A, \mathbb{Q}) \) is a graded \(\text{FI} \)-algebra of finite type; this is a special case of their much more general results on the ordered configuration space of manifolds [CEF12, Theorem 4.7; see also Theorems 4.1 and 4.2]. In [CF13, Theorem 4.6], Church–Farb analyze the stability behaviour of the sequence \(H^m(\mathcal{M}_{BC}, \mathbb{C}) \) of \(B_n \)-representations.

The following result recovers [CF13, Theorem 4.1 and 4.6] in types \(A_{n-1} \) and \(B_n/C_n \). It extends the work of Church–Ellenberg–Farb on the cohomology of the ordered configuration space of \(\mathbb{C} \).

Theorem 5.8. Let \(\mathcal{M}_W \) be the complex hyperplane complement associated with the Weyl group \(W_n \) in type \(A_{n-1}, B_n/C_n, \) or \(D_n \), as described above. In each degree \(m \), the cohomology groups \(H^m(\mathcal{M}_A(\bullet), \mathbb{C}) \) form an \(\text{FI}_{A^2} \)-module finitely generated in degree \(\leq 2m \), and both \(H^m(\mathcal{M}_{BC}(\bullet), \mathbb{C}) \) and \(H^m(\mathcal{M}_{D}(\bullet), \mathbb{C}) \) are \(\text{FI}_{BC} \)-modules finitely generated in degree \(\leq 2m \). For each \(W \), the cohomology \(H^*(\mathcal{M}_W(\bullet), \mathbb{C}) \) of the hyperplane complements is a graded \(\text{FI}_W \)-module of slope 2.
Proof of Theorem 5.8. For each \(\mathcal{W} \), the projection map \(P \) has a section \(S \):

\[
P : \mathcal{M}_\mathcal{W}(n + 1) \rightarrow \mathcal{M}_\mathcal{W}(n) \quad S : \mathcal{M}_\mathcal{W}(n) \rightarrow \mathcal{M}_\mathcal{W}(n + 1)
\]

\[
(v_1, \ldots, v_n, v_{n+1}) \mapsto (v_1, \ldots, v_n) \quad (v_1, \ldots, v_n) \mapsto (v_1, \ldots, v_n, 1 + \sum_{i=1}^n |v_i|)
\]

and so \(P \) induces an injective map on cohomology, as follows. We associate each hyperplane \(H \subseteq \mathbb{C}^n \) to its orthogonal complement, the span of the vectors

\[
\pm(e_i - e_j), \quad \pm(e_i + e_j), \quad \text{or} \quad e_i, \quad \text{for } i, j = 1, \ldots, n.
\]

The inclusion of these normal vectors \(\mathbb{C}^n \rightarrow \mathbb{C}^{n+1} \) gives an identification of the hyperplane \(H \subseteq \mathbb{C}^n \) with a hyperplane \(H \subseteq \mathbb{C}^{n+1} \), which define the induced map \(P^* \):

\[
P^* : H^*(\mathcal{M}_\mathcal{W}(n); \mathbb{C}) \rightarrow H^*(\mathcal{M}_\mathcal{W}(n + 1); \mathbb{C})
\]

\[
e_H \mapsto e_H
\]

These inclusions are \(\mathcal{W}_n \)-equivariant maps, and give \(H^*(\mathcal{M}_\mathcal{W}(\bullet); \mathbb{C}) \) the structure of a graded \(\text{FI}_{\mathcal{W}} \)-module.

The \(\text{FI}_A \)-module \(H^1(\mathcal{M}_A(\bullet); \mathbb{C}) \) is finitely generated in degree \(\leq 2 \) by element \(e_{(e_1-e_2)} \), and the \(\text{FI}_{BC} \)-module \(H^1(\mathcal{M}_{BC}(\bullet); \mathbb{C}) \) is finitely generated in degree \(\leq 2 \) by elements \(e_{(e_1-e_2)}, e_{(e_1+e_2)} \), and \(e_{(e_1)} \). It follows from Proposition 2.23 that \(H^m(\mathcal{M}_\mathcal{W}(\bullet); \mathbb{C}) \) is finitely generated in degree \(\leq 2m \) in types A and B/C. The bound on the slope of the \(\text{FI}_W \)-algebra \(H^*(\mathcal{M}_\mathcal{W}(\bullet); \mathbb{C}) \) follows from Theorem 2.12.

The section \(S \) induces a map \(S^* : H^*(\mathcal{M}_\mathcal{W}(n + 1); \mathbb{C}) \rightarrow H^*(\mathcal{M}_\mathcal{W}(n); \mathbb{C}) \); when \(\mathcal{W}_n \) is \(S_n \) or \(B_n \), these sections give \(H^*(\mathcal{M}_\mathcal{W}(\bullet), \mathbb{C}) \) the structure of an \(\text{FI}_{\mathcal{W}} \)-module, just as in the proof of [CEF12, Theorem 4.6]. We can describe this structure explicitly: an \(\text{FI}_{BC} \)-morphism \(f : \mathfrak{m}_0 \rightarrow \mathfrak{n}_0 \) acts on the generators \(e_H \) as follows.

\[
e_{(e_i-e_j)} \mapsto \begin{cases}
e_{(e_f(i)-e_f(j))}, & \text{if } f(i), f(j) \neq 0 \\ 0, & \text{if } f(i) = 0 \text{ or } f(j) = 0 \end{cases}
\]

\[
e_{(e_i+e_j)} \mapsto \begin{cases}
e_{(e_f(i)+e_f(j))}, & \text{if } f(i), f(j) \neq 0 \\ 0, & \text{if } f(i) = 0 \text{ or } f(j) = 0 \end{cases}
\]

\[
e_{(e_i)} \mapsto \begin{cases}
e_{(e_f(i))}, & \text{if } f(i) \neq 0 \\ 0, & \text{if } f(i) = 0 \end{cases}
\]
Here, we use the convention that $e_{-i} := -e_i$. It is straightforward to verify that these maps are functorial.

In type A, this action restricts to an \mathcal{FI}_A–module structure on the ring $H^*(\mathcal{M}_A(n), \mathbb{C})$ generated by the elements $e_{(e_i-e_j)}^\perp$. For type D, observe that the inclusion of hyperplane complements $\mathcal{M}_{BC}(n) \hookrightarrow \mathcal{M}_D(n)$ induces an inclusion of cohomology groups $H^*(\mathcal{M}_D(n); \mathbb{C}) \hookrightarrow H^*(\mathcal{M}_{BC}(n), \mathbb{C})$.

The subspaces $H^*(\mathcal{M}_D(n); \mathbb{C}) \subseteq H^*(\mathcal{M}_{BC}(n), \mathbb{C})$ form the B_n–invariant subring generated by the elements $e_{(e_i-e_j)}^\perp$ and $e_{(e_i+e_j)}^\perp$, $i \neq j$. These inclusions realize $H^*(\mathcal{M}_D(n); \mathbb{C})$ as a sub–\mathcal{FI}_{BC}–module of $H^*(\mathcal{M}_{BC}(n); \mathbb{C})$ generated as an \mathcal{FI}_{BC}–algebra by the \mathcal{FI}_{BC}–module $H^1(\mathcal{M}_D(n); \mathbb{C})$. Since $H^1(\mathcal{M}_D(n); \mathbb{C})$ is finitely generated in degree ≤ 2, it follows again that $H^*(\mathcal{M}_D(n); \mathbb{C})$ is an \mathcal{FI}_{BC}–algebra of slope 2 with $H^m(\mathcal{M}_D(n); \mathbb{C})$ finitely generated in degree $\leq 2m$. \hfill \Box

Theorem 5.8 has the following consequences.

Corollary 5.9. In each degree m, the sequence of cohomology groups $\{H^m(\mathcal{M}_W(n), \mathbb{C})\}_{n}$ of the associated hyperplane complement is uniformly representation stable in degree $\leq 4m$.

In types A and B/C, Corollary 5.9 recovers [CF13, Theorem 4.1 and 4.6].

Corollary 5.10. In each degree m, the sequence of characters of the \mathcal{W}_n–representations $H^m(\mathcal{M}_W(n), \mathbb{C})$ are given by a unique character polynomial of degree $\leq 2m$ for all n.

Proof of Corollary 5.10. The statement follows for S_n from [CEF12, Theorem 2.67], and in type B_n from Proposition 4.16. Since the D_n characters are the restriction of the characters of B_n on the B_n–subrepresentations $H^*(\mathcal{M}_D(n); \mathbb{C}) \subseteq H^*(\mathcal{M}_{BC}(n), \mathbb{C})$, these D_n characters are given by the character polynomial for B_n on this sub–\mathcal{FI}_{BC}–module of $H^*(\mathcal{M}_{BC}(\bullet), \mathbb{C})$. \hfill \Box

The character polynomials for $H^m(\mathcal{M}_A(\bullet), \mathbb{C})$ are computed in [CEF12] for some low values of m. The decompositions for $H^1(\mathcal{M}_D(\bullet), \mathbb{C})$ and $H^1(\mathcal{M}_{BC}(\bullet), \mathbb{C})$ are:

$$H^1(\mathcal{M}_D(\bullet), \mathbb{C}) = 2M_D(\{ \square, \varnothing \})$$

$$\chi_{H^1(\mathcal{M}_D(\bullet), \mathbb{C})} = 2\left(\frac{X_1}{2} \right) + 2\left(\frac{Y_1}{2} \right) + 2X_2$$

$$H^1(\mathcal{M}_{BC}(\bullet), \mathbb{C}) = M_{BC}(\square, \varnothing) \oplus M_{BC}(\square, \varnothing) \oplus M_{BC}(\varnothing, \square)$$

$$\chi_{H^1(\mathcal{M}_{BC}(\bullet), \mathbb{C})} = 2\left(\frac{X_1}{2} \right) + 2\left(\frac{Y_1}{2} \right) + 2X_2 + X_1 - Y_1$$

The decompositions for $H^2(\mathcal{M}_D(\bullet), \mathbb{C})$ and $H^2(\mathcal{M}_{BC}(\bullet), \mathbb{C})$ are:

$$H^2(\mathcal{M}_D(\bullet), \mathbb{C}) = M_D(\{ \square, \varnothing \}) \oplus M_D(\{ \square, \varnothing \}) \oplus M_D(\{ \square, \square \}) \oplus M_D(\{ \square, \square \}) \oplus M_D(\{ \varnothing, + \})$$

$$\oplus M_D(\{ \square, \square \}) \oplus M_D(\varnothing, \varnothing, \varnothing) \oplus M_D(\varnothing, \varnothing, \varnothing) \oplus M_D(\varnothing, \varnothing, \varnothing)$$

"
\[\chi_{H^2(\mathcal{M}_D(\bullet), \mathbb{C})} = \left(\frac{X_1}{2} \right) - X_1 X_2 + \left(\frac{Y_1}{2} \right) + X_2 - Y_2 + 8 \left(\frac{X_1}{3} \right) + 8 \left(\frac{Y_1}{3} \right) - X_3 - Y_3 + 12 \left(\frac{X_1}{4} \right) + 4 \left(\frac{X_1}{2} \right) \left(\frac{Y_1}{2} \right) + 12 \left(\frac{Y_1}{4} \right) + 4 X_2 \left(\frac{X_1}{2} \right) + 4 X_2 \left(\frac{Y_1}{2} \right) - 4 \left(\frac{Y_2}{2} \right) - 2 Y_4 \]

\[H^2(\mathcal{M}_{BC}(\bullet), \mathbb{C}) = M_{BC}(\square, \varnothing) \oplus M_{BC}(\varnothing, \square)^{\otimes 2} \oplus M_{BC}(\square, \varnothing)^{\otimes 2} \]

\[\oplus M_{BC}(\square, \square)^{\otimes 2} \oplus M_{BC}(\varnothing, \square) \oplus M_{BC}(\varnothing, \square) \oplus M_{BC}(\varnothing, \square) \oplus M_{BC}(\varnothing, \square) \]

\[\chi_{H^2(\mathcal{M}_{BC}(\bullet), \mathbb{C})} = 3 \left(\frac{X_1}{2} \right) + 3 \left(\frac{Y_1}{2} \right) - X_1 Y_1 + 3 X_2 - Y_2 + 14 \left(\frac{X_1}{3} \right) + 2 \left(\frac{X_1}{2} \right) Y_1 + 2 X_1 \left(\frac{Y_1}{2} \right) + 12 \left(\frac{X_1}{4} \right) + 4 \left(\frac{X_1}{2} \right) \left(\frac{Y_1}{2} \right) + 12 \left(\frac{Y_1}{4} \right) + 4 X_2 \left(\frac{X_1}{2} \right) + 4 X_2 \left(\frac{Y_1}{2} \right) - 4 \left(\frac{Y_2}{2} \right) - 2 Y_4 \]

Problem 5.11. For each \(m \), compute the character polynomial of the FI\(_A\)–module \(H^m(\mathcal{M}_A(\bullet), \mathbb{C}) \), and compute its decomposition into induced representations \(M_A(U) \).

Compute the character polynomials of the FI\(_BC\)–modules \(H^m(\mathcal{M}_{BC}(\bullet), \mathbb{C}) \) and \(H^m(\mathcal{M}_D(\bullet), \mathbb{C}) \) for each \(m \), and compute the decomposition into induced representations \(M_{BC}(U) \).

References

