FI-hyperhomology and ordered configuration spaces

Jeremy Miller* and Jennifer C. H. Wilson

July 23, 2019

Abstract

Using a result of Gan–Li on FI-hyperhomology and a semi-simplicial resolution of configuration spaces due to Randal-Williams, we establish an improved representation stability stable range for configuration spaces of distinct ordered points in a manifold. Our bounds on generation degree improve the best known stability slope by a factor of 5/2 in the most general case. We adapt this result of Gan–Li to apply beyond stability arguments involving highly-connected simplicial complexes, and our methods suggest that their result may be widely applicable to improving most stability ranges for FI-modules in the current representation stability literature.

1 Introduction

In this paper, we prove a representation stability result for ordered configuration spaces of points in a manifold. This result improves upon previous results of Church [Chu12], Church–Ellenberg–Farb [CEF15], Church–Ellenberg–Farb–Nagpal [CEFN14], Miller–Wilson [MW], Church–Miller–Nagpal–Reinhold [CMNR18] and Bahran [Bah]: it establishes the best currently known stable ranges for the cohomology of ordered configuration spaces of manifolds with integral coefficients.

Let M be a connected manifold of dimension at least 2. The family of k-point ordered configuration spaces of M are not cohomologically stable in k; however, their cohomology groups do stabilize with respect to their natural S_k–actions. The standard way to define and quantify this stability is through bounds on the generation degree and presentation degree of the corresponding FI–module structure on the sequences of cohomology groups, which we recall below. These are equivariant analogues of the classical homological stability stable ranges in which the stabilization map is surjective or, is an isomorphism, respectively.

Let \FI denote the category of finite sets and injective maps. An FI-module is a functor from \FI to the category of abelian groups, an FI-chain complex is a functor from \FI to chain-complexes over \mathbb{Z}, and so forth. Given an FI-module V, we denote its value on a finite set S by V_S. Following the notation of Church–Ellenberg–Farb [CEF15], we let

$$H^\FI_0 : \FI\text{-Mod} \rightarrow \FI\text{-Mod}$$

be the functor given by the formula

$$H^\FI_0(V)_S := \text{coker} \left(\bigoplus_{T \subseteq S} V_T \rightarrow V_S \right).$$

Here the maps $V_T \rightarrow V_S$ are induced by the FI-module structure. Let H^\FI_i denote the ith left-derived functor of H^\FI_0. These functors are known as the FI-homology functors; see Church–Ellenberg [CE17]. We say that an FI-module V has generation degree $\leq g$ if

$$H^\FI_0(V)_S \cong 0 \quad \text{for} \quad |S| > g.$$

We say that V has presentation degree $\leq r$ if

$$H^\FI_0(V)_S \cong H^\FI_1(V)_S \cong 0 \quad \text{for} \quad |S| > r.$$

*Jeremy Miller was supported in part by NSF grant DMS-1709726.
Presentation degree controls the degree of generation of the terms in a 2-step resolution of \mathcal{V} by “free” $\mathcal{F}l$-modules; see Church–Ellenberg [CE17, Proposition 4.2]. Let $F(M)$ be the contravariant functor from $\mathcal{F}l$ to the category of spaces sending a finite set S to the space $F_S(M)$ of embeddings of S into M. For the set $[k] := \{1, 2, \ldots, k\}$, the space $F_{[k]}(M)$ is canonically identified with the ordered configuration space of M,

$$F_k(M) = \{(m_1, m_2, \ldots, m_k) \in M^k | m_i \neq m_j \text{ for all } i \neq j\}.$$

Taking cohomology yields $\mathcal{F}l$-modules $H^j(F(M))$. Our main theorem is the following.

Theorem 1.1. Let M be a connected manifold of dimension $d = 2$. Then $H^j(F(M))$ has generation degree $\leq 4j + 1$ and presentation degree $\leq 4j + 2$. If $\dim M \geq 3$, then $H^j(F(M))$ has generation degree $\leq 2j + 1$ and presentation degree $\leq 2j + 2$.

Theorem 1.1 implies that, for $k \geq 4j + 1$, the group $H^j(F_k(M))$ is spanned by the S_k-orbit of the image of $H^j(F_{k+1}(M))$ under the map induced by the fibration $F_k(M) \to F_{k+1}(M)$ forgetting all but the first $(4j + 1)$ points. In other words, every cohomology class in $H^j(F_k(M))$ can be represented by a sum of classes pulled back along the natural forgetful maps $F_k(M) \to F_{k+1}(M)$. Moreover, for each j the sequence of cohomology groups $\{H^j(F_k(M))\}_k$ is completely determined by the first $4j + 2$ groups. When M has dimension at least 3, we obtain the improved result that the sequence of cohomology groups only depends on the first $2j + 2$ groups. Concretely, Church–Ellenberg [CE17, Theorem C] implies the following corollary.

Corollary 1.2. Let M be a connected 2-manifold. Then for each homological degree $j \geq 0$,

$$H^j(F_k(M)) \cong \colim_{S \subseteq \{1, 2, \ldots, k\} \atop |S| \leq 4j + 2} H^j(F_S(M)).$$

If M is a connected manifold of dimension $d \geq 3$, then for each homological degree $j \geq 0$,

$$H^j(F_k(M)) \cong \colim_{S \subseteq \{1, 2, \ldots, k\} \atop |S| \leq 2j + 2} H^j(F_S(M)).$$

Another consequence is that the sequences of cohomology groups $\{H^j(F_k(M))\}_k$ are centrally stable in the sense of Putman [Put15]; see also Patzt [Pat]. This implies that, for $k > 4j + 2$, there is an explicit presentation for the group $H^j(F_k(M))$ in terms of the groups $H^j(F_{k-1}(M))$ and $H^j(F_{k-2}(M))$, and the natural maps between them [CMNR18, Propositions 2.4]. We therefore obtain recursive descriptions of the cohomology groups $H^j(F_k(M))$ in the stable range $k > 4j + 2$.

See [CE17, Theorem A] and [CMNR18, Propositions 3.1] for more consequences of bounds for generation degree and presentation degree.

Another motivation for seeking improved stable ranges is the notion of secondary stability introduced by Galatius–Kupers–Randal-Williams [GKRWa, GKRWb], which was adapted to the representation stability context in Miller–Wilson [MW]. Secondary stability is a pattern in the unstable (co)homology of spaces whose (co)homology exhibits homological or representation stability. A prerequisite for establishing nontrivial secondary stability is sharp stability bounds for primary stability.

Remark 1.3. This paper originated as the appendix to Miller–Wilson [MW]. It was later split from that paper for reasons of length. That appendix proved the first explicit bounds for the generation and presentation degree of the integral cohomology of ordered configuration spaces of (possibly closed) manifolds. It was also the first paper to establish stability for configuration spaces of points in non-orientable manifolds. The appendix relied on algebraic results of Church–Ellenberg [CE17]. Since its release, Church–Miller–Nagpal–Reinhold [CMNR18] improved on the stable ranges, using the appendix to address non-orientable manifolds. Bahran [Bah] further improved the stable ranges for high-dimensional orientable manifolds. This updated version of the appendix now relies on algebraic results of Gan–Li [GL], which allow us to establish an even better stable range.

Remark 1.4. Church–Miller–Nagpal–Reinhold [CMNR18] described two methods for proving representation stability, which they called Type A and Type B stability setups. Almost all known stability results for $\mathcal{F}l$-modules fall into one of those two categories broadly construed or involve directly calculating the $\mathcal{F}l$-modules in question. Gan–Li [GL] dramatically improved the stable
ranges arising from Type B setups. The methods of this paper can be used to transform most Type A setups currently in the literature into Type B setups, and should result in improved ranges in those situations. In particular, the stable ranges for pure mapping class groups (Jiménez Rolland [JR]), homotopy groups of configuration space (Kupers–Miller [KM18]), configuration spaces of non-manifolds (Tosteson [Tos]), and generalized configuration spaces where collisions are allowed (Petersen [Pet17]) could possibly be improved using the techniques of this paper.

Acknowledgments. We are grateful to Rohit Nagpal for helpful conversations regarding the hyperhomology of cochain complexes. We are grateful to our anonymous referee for helpful feedback.

2 Configuration spaces of non-compact manifolds

In this section, we prove a stability theorem for the configuration spaces of a manifold M in the case that M is not compact. We begin by recalling the category Fl_\sharp which acts up to homotopy on the configuration spaces of points in a non-compact manifold. The following definition is equivalent to Church–Ellenberg–Farb [CEF15, Definition 4.1.1].

Definition 2.1. Let Fl_\sharp denote the category whose objects are based sets and whose morphisms are based maps such that the preimage of every element but the basepoint has size at most one.

We will view Fl_\sharp-modules as Fl-modules by restricting to the wide subcategory $\text{Fl} \subseteq \text{Fl}_\sharp$ of injective morphisms. Note that the opposite category of Fl_\sharp is again Fl_\sharp.

When M is a non-compact manifold, its configuration spaces admit maps $F_k(M) \to F_{k+1}(M)$ by introducing a point “at infinity” (see Church–Ellenberg–Farb [CEF15, Section 6.4]), and these maps endow the (co)homology groups with Fl_\sharp–module structures. The following result is due to Church–Ellenberg–Farb [CEF15, Proposition 6.4.2]. Miller–Wilson [MW, Section 3.1] addresses the case that the non-compact manifold M is not the interior of a compact manifold with boundary.

Proposition 2.2 (Church–Ellenberg–Farb [CEF15, Proposition 6.4.2]; see also Miller–Wilson [MW, Section 3.1]). If M is a non-compact manifold of dimension $d \geq 2$, then the assignment $S \mapsto F_S(M)$ defines a functor from Fl_\sharp to the homotopy category of spaces. In particular, post-composing with the jth homology or cohomology group functor gives Fl_\sharp-modules which we denote by $H_j(F(M))$ and $H^j(F(M))$, respectively.

The following result appears in Miller–Wilson [MW, Theorem 3.12 and Theorem 3.27]. It follows easily from Church–Ellenberg–Farb [CEF15, Theorem 6.4.3] if M is orientable and of finite type.

Theorem 2.3 ([MW, Theorems 3.12 and 3.27], [CEF15, Theorem 6.4.3]). Let M be a non-compact connected manifold of dimension d. If $d = 2$, then $H_j(F(M))$ has generation degree $\leq 2j$. If $d \geq 3$, then $H_j(F(M))$ has generation degree $\leq j$.

Let FB denote the category of finite sets and bijections. Let Mod_{FB} denote the category of functors from FB to abelian groups, so Mod_{FB} is equivalent to the category of sequences of integral S_i–representations. Let $\mathcal{I} : \text{Mod}_{FB} \to \text{Mod}_{\text{Fl}}$ be the left adjoint of the forgetful functor. Concretely, for an FB–module U, the Fl–module $\mathcal{I}(U)$ is given by the following formula (see Church–Ellenberg–Farb [CEF15, Definition 2.2.2]):

$$\mathcal{I}(U)_S = \bigoplus_{T \subseteq S} U_T.$$

Using this functor, Church–Ellenberg–Farb [CEF15, Lemma 4.1.5] gave another characterization of Fl_\sharp-modules.

Theorem 2.4 ([CEF15, Lemma 4.1.5]). The functor \mathcal{I} factors through the inclusion $\text{Mod}_{\text{Fl}_\sharp} \to \text{Mod}_{\text{Fl}}$ and induces an isomorphism of categories $\text{Mod}_{FB} \to \text{Mod}_{\text{Fl}_\sharp}$.

Church–Ellenberg–Farb [CEF15, Remark 2.3.8] showed that, if we view Mod_{FB} as the codomain of $H^0_{\text{Fl}_\sharp}$, then $H^0_{\text{Fl}_\sharp}$ is a right inverse to \mathcal{I}.

For an Fl-module or FB-module U, we say $\deg U \leq d$ if $U_k \cong 0$ for $k > d$. In particular, the generation degree of $\mathcal{I}(U)$ is equal to $\deg U$.

Given an Fl-module \mathcal{V}, we can form Fl_\sharp-modules $\text{Ext}^2_{\text{Fl}}(\mathcal{V}, \mathbb{Z})$ by composing with the Ext functors pointwise. Since the opposite category of FB is Fl, we can also perform this construction with FB-modules to obtain FB-modules.
Lemma 2.5. Let \(V \) be an \(\mathbb{F} \mathbb{I} \) module with generation degree \(\leq g \). Then the \(\mathbb{F} \mathbb{I} \)-modules \(\text{Ext}^j_{\mathbb{I}}(V, \mathbb{Z}) \) have generation degree \(\leq g \).

Proof. Since the direct sum of exact chain complexes of free abelian groups is an exact chain complex of free abelian groups, it follows from the description of \(\mathcal{I} \) above (quoting [CEF15, Definition 2.2.2]) that \(\mathcal{I} \) takes pointwise free resolutions to pointwise free resolutions. Similarly, since Hom commutes with finite direct sums, it follows that \(\mathcal{I} \) commutes with pointwise Hom functors. Thus \(\mathcal{I} \) commutes with pointwise Ext functors and we have isomorphisms

\[
\text{Ext}^j_{\mathbb{I}}(V, \mathbb{Z}) \cong \text{Ext}^j_{\mathbb{I}}(\mathcal{I}(H^0_{\mathbb{I}}(V)), \mathbb{Z}) \cong I(\text{Ext}^j_{\mathbb{I}}(H^0_{\mathbb{I}}(V), \mathbb{Z})).
\]

To check that these isomorphisms of abelian groups assemble to form an isomorphism of \(\mathbb{F} \mathbb{I} \)-modules, it is helpful to use functorial free resolutions like the bar resolution to compute Ext. This isomorphism shows that the generation degree of \(\text{Ext}^j_{\mathbb{I}}(V, \mathbb{Z}) \) is bounded by \(\deg H^0_{\mathbb{I}}(V) \) which is the generation degree of \(V \).

This gives the following corollary.

Corollary 2.6. Let \(M \) be a non-compact connected manifold of dimension \(d \). If \(d = 2 \), then \(H^1(F(M)) \) has generation degree \(\leq 2j \). If \(d \geq 3 \), then \(H^j(F(M)) \) has generation degree \(\leq j \).

Proof. By the universal coefficient theorem, there is a short exact sequence of \(\mathbb{F} \mathbb{I} \)-modules

\[
0 \to \text{Ext}^1_{\mathbb{I}}(H^j_{-1}(F(M), \mathbb{Z}), \mathbb{Z}) \to H^j(F(M)) \to \text{Ext}^0_{\mathbb{I}}(H^j_{-1}(F(M), \mathbb{Z})) \to 0.
\]

This gives an exact sequence

\[
H^0_{\mathbb{I}}(\text{Ext}^1_{\mathbb{I}}(H^j_{-1}(F(M), \mathbb{Z}), \mathbb{Z})) \to H^0_{\mathbb{I}}(H^j(F(M))) \to H^0_{\mathbb{I}}(\text{Ext}^0_{\mathbb{I}}(H^j_{-1}(F(M), \mathbb{Z})).
\]

The claim now follows by Theorem 2.3 and Lemma 2.5.

Remark 2.7. We remark that, when \(M \) is finite type, then Corollary 2.6 is a consequence of the result of Church–Ellenberg–Farb [CEF15, proof of Theorem 4.1.7] that an \(\mathbb{F} \mathbb{I} \)-module \(V \) is finitely generated in degree \(\leq g \) if and only if \(V_k \) is generated by \(O(k^g) \) elements. We can then use Theorem 2.3 and the universal coefficients theorem to bound the growth in the number of generators of the abelian group \(H^j(F_k(M)) \), and Corollary 2.6 follows.

Higher \(\mathbb{F} \mathbb{I} \)-homology groups of the cohomology groups of configuration spaces of non-compact manifolds vanish uniformly by the following theorem.

Theorem 2.8 ([CEF17, Lemma 2.3]). Let \(V \) be an \(\mathbb{F} \mathbb{I} \)-module. Then \(H^j_{\mathbb{I}}(V) = 0 \) for all \(i > 0 \).

3 The puncture resolution

We now recall the puncture resolution from Randal-Williams [RW13], which will allow us to leverage results for non-compact manifolds to prove results for compact manifolds.

Definition 3.1. Fix a finite set \(S \). We define the puncture resolution of the configuration space \(F_S(M) \) as follows. For \(p \geq -1 \), denote the topological spaces

\[
\text{Pun}_p(F_S(M)) = \bigcup_{(x_0, \ldots, x_p) \in F_{(0, \ldots, p)}(M)} F_S(M - \{x_0, \ldots, x_p\}).
\]

In particular, \(\text{Pun}_{-1}(F_S(M)) = F_S(M) \). See Figure ?? for an illustration. For fixed \(S \), the spaces \(\text{Pun}_p(F_S(M)) \) assemble to form an augmented semi-simplicial space. The \(i \)th face map is induced by the inclusion

\[
M - \{x_0, \ldots, x_p\} \hookrightarrow M - \{x_0, \ldots, \hat{x}_i, \ldots, x_p\}.
\]

Given an injection \(S \hookrightarrow T \), composition of embeddings gives a map of augmented semi-simplicial spaces \(\text{Pun}_p(F_T(M)) \to \text{Pun}_p(F_S(M)) \). In this way, the puncture resolution assembles to form an augmented semi-simplicial co-\(\mathbb{I} \)-space \(\text{Pun}_p(F(M)) \). Thus the cohomology groups of the space of \(p \)-simplices of the puncture resolution assemble to form an \(\mathbb{I} \)-module and the face maps are maps of \(\mathbb{I} \)-modules. In particular, the action of the symmetric group \(S_k \) on \(F_k(M) \) extends to an action on \(\text{Pun}_p(F_k(M)) \). Randal-Williams proved the following [RW13, Section 9.4].
Theorem 3.2 ([RW13, Section 9.4]). Let M be a manifold. The augmentation map
\[||\Pun_* (F_k (M))|| / S_k \to F_k (M) / S_k \]
is a weak equivalence.

We now use Theorem 3.2 to prove the following.

Proposition 3.3. Let M be a manifold. The augmentation map $||\Pun_* (F_k (M))|| \to F_k (M)$ is a weak equivalence.

Proof. We proceed as in the proof of Miller–Wilson [MW, Proposition 3.8]. It suffices to show that the homotopy fiber of the map $||\Pun_* (F_k (M))|| \to F_k (M)$ is contractible. If we use the standard path space construction of homotopy fibers, then this homotopy fiber is homeomorphic to the homotopy fiber of $||\Pun_* (F_k (M))|| / S_k \to F_k (M) / S_k$, which is contractible by Theorem 3.2. \qed

4 Proof of Theorem 1.1

In this section, we prove the main theorem. We begin by recalling the definition of FI-hyperhomology.

Definition 4.1. Given an FI-chain complex V_*, we denote the ith hyperhomology group associated to the chain complex V_* and the functor H^{FI}_0 by $H^{FI}_i (V_*)$ and refer to it as FI-hyperhomology.

A key component of our proof is the following result of Gan–Li.

Theorem 4.2 (Gan–Li [GL, Theorem 5]). Let V_* be an FI–chain complex supported in nonnegative homological degrees. Its ith homology group is an FI-module $H_i (V_*)$. Let
\[t_i (V_*) = \deg H^{FI}_i (V_*) \]
denote the degree of the FI-hyperhomology of V_* in homological degree j. Then for each $i \geq 0$,
\[\deg H^{FI}_0 (H_i (V_*)) \leq 2 t_i (V_*) + 1, \]
\[\deg H^{FI}_1 (H_i (V_*)) \leq 2 \max \left(t_i (V_*), t_{i+1} (V_*) \right) + 2. \]

The following result is well-known; see for example Bendersky–Gitler [BG91, Proposition 1.2].

Proposition 4.3 (E.g., Bendersky–Gitler [BG91, Proposition 1.2]). Let $X_* \equiv C^\infty (X_p)$ be a semi-simplicial space. Let $X^{*,*}$ be the double complex with $X^{p,q} = C^q (X_p)$ with one differential given by the differential on singular cochains and the other given by the alternating sum of the facemaps. Let X^* be the total complex of $X^{*,*}$. Then $H_i (X^*) \cong H^i (||X_*||)$.

We now prove the main theorem, an improved stable range for the cohomology of ordered configuration spaces.

Proof of Theorem 1.1. Gan–Li’s result Theorem 4.2 requires an FI-chain complex supported in nonnegative degrees, so we cannot apply the result directly to the cochain complex $C^* (\Pun_* (F(M)))$. To produce a complex satisfying Gan–Li’s assumptions, we re-index and truncate this cochain complex. For fixed $N \in \mathbb{N}_{\geq 1}$, define the homologically-graded FI-chain complex
\[C^\leq N_i := \begin{cases} \bigoplus_{s+t=N-i} C^s (\Pun_* (F(M))), & 0 \leq i \leq N \\ 0, & \text{otherwise.} \end{cases} \]
By Proposition 3.3 and Proposition 4.3, we see that \(H_i(C^\leq N)_k \cong H^{N-i}(F_k(M)) \) for \(1 \leq i \leq N \).

The complex \(C^\leq N \) is the total complex of a double complex with vertical chain complexes \(C^{N-s-*}(\text{Pun}_s(F(M))) \) for each \(s \geq 0 \). So now fix \(s \) and consider the FI-hyperhomology associated to the chain complex \(C^{N-s-*}(\text{Pun}_s(F(M))) \). One of the two standard spectral sequences converging to the hyperhomology groups \(H^{FI}_{p+q}(C^{N-s-*}(\text{Pun}_s(F(M)))) \) has \(E^2 \) page
\[
E^2_{p,q} = H^{FI}_p(H_q(C^{N-s-*}(\text{Pun}_s(F(M))))) \\
\cong \bigoplus_{(x_0,\ldots,x_s)} H^{FI}_p(H^{N-s-q}(F(M - \{x_0,\ldots,x_s\}))).
\]

Observe that punctured manifolds are not compact, so by Proposition 2.2 the cohomology groups \(H^* \) to the hyperhomology groups \(H^{FI}_* \) of their configuration spaces form FI-modules. Then by Church–Ellenberg’s result Theorem 2.8,
\[
E^2_{p,q} \cong \begin{cases}
\bigoplus_{(x_0,\ldots,x_s)} H^{FI}_0(H^{N-s-q}(F(M - \{x_0,\ldots,x_s\})), & p = 0 \\
0, & p > 0.
\end{cases}
\]

Thus the spectral sequence collapses at \(E^2 \) and we find
\[
H^{FI}_q(C^{N-s-*}(\text{Pun}_s(F(M)))) \cong \bigoplus_{(x_0,\ldots,x_s)} H^{FI}_0(H^{N-s-q}(F(M - \{x_0,\ldots,x_s\}))).
\]

By Corollary 2.6,
\[
t^N_q(s) := \deg H^{FI}_q(C^{N-s-*}(\text{Pun}_s(F(M)))) = \deg H^{FI}_0(H^{N-s-q}(F(M - \{x_0,\ldots,x_s\}))) \text{ for } (x_0,\ldots,x_s) \in F(0,\ldots,s)(M),
\]
\[
\leq \begin{cases}
2N - 2s - 2q, \text{ dim}(M) = 2 \\
N - s - q, \text{ dim}(M) \geq 3.
\end{cases}
\]

The complex \(C^\leq N \) is an iterated extension of the complexes \(C^{N-s-*}(\text{Pun}_s(F(M))) \) for \(0 \leq s \leq N \). Concretely, we can by definition express \(C^\leq N \) as
\[
C^\leq N = \bigoplus_{0 \leq i \leq N} C^{N-i-*}(\text{Pun}_i(F(M))).
\]

We can then define a filtration of \(C^\leq N \) by an index \(S \), bounding the simplicial variable \(s \),
\[
C^\leq N(S) = \bigoplus_{0 \leq i \leq N} C^{N-i-*}(\text{Pun}_i(F(M))) \bigoplus_{0 \leq i \leq \min(S,N-i)} C^{N-i-*}(\text{Pun}_i(F(M))) \\
= \bigoplus_{0 \leq i \leq \min(S,N-i)} C^{N-i-*}(\text{Pun}_i(F(M))) \\
\bigoplus_{0 \leq i \leq S} C^{N-s-*}(\text{Pun}_s(F(M)))
\]
and so for each fixed \(0 \leq S \leq N \) we find
\[
C^\leq N(S)/C^\leq N(S-1) \cong \bigoplus_{0 \leq i \leq N-S} C^{N-i-*}(\text{Pun}_i(F(M))).
\]

By (for example) Weibel [Wei95, Lemma 5.7.5], given a short exact sequence \(0 \to K_\ast \to A_\ast \to Q_\ast \to 0 \) of bounded-below FI-chain complexes, there is a long exact sequence of FI-hyperhomology groups
\[
\cdots \to H^F_{q+1}(Q_\ast) \to H^F_q(K_\ast) \to H^F_q(A_\ast) \to H^F_q(P_\ast) \to \cdots
\]

Thus by induction on \(s \), the degree \(t^N_q := \deg H^{FI}_q(C^\leq N) \) is bounded above by \(\max_{0 \leq i \leq N} t^N_q(s) \).

Specifically,
\[
t^N_q = \deg H^F_q(C^\leq N) \leq \begin{cases}
2N - 2q, \text{ dim}(M) = 2 \\
N - q, \text{ dim}(M) \geq 3.
\end{cases}
\]
Our goal is to find bounds for the generation and presentation degrees of the FI-module $H^j(F(M))$. As noted earlier, $H_i(C_*^\leq N)_k \cong H^{N-i}(F_k(M))$ for $1 \leq i \leq N$. In particular, we have

$$H^j(F(M)) = H_1(C_*^\leq (j+1))\text{.}$$

Using Gan–Li’s result Theorem 4.2, we obtain the following:

$$\deg H_0^FI(\mathcal{H}(F(M))) = \deg H_0^FI(\mathcal{H}(C_*^\leq (j+1))) \leq 2t_{j+1}^1 + 1 \leq \begin{cases} 4j + 1, & \dim(M) = 2 \\ 2j + 1, & \dim(M) \geq 3 \end{cases}$$

$$\deg H_1^FI(\mathcal{H}(F(M))) = \deg H_1^FI(\mathcal{H}(C_*^\leq (j+1))) \leq 2 \max(t_{j+1}^1, t_{j+1}^2) + 2 \leq \begin{cases} 4j + 2, & \dim(M) = 2 \\ 2j + 2, & \dim(M) \geq 3 \end{cases}.$$

This concludes the proof. \hfill \Box

In the above proof, we considered $H_1(C_*^\leq (j+1)) \cong H^j(F_k(M))$ for concreteness. The proof would have worked equally well by instead studying $H_i(C_*^\leq (j+1)) \cong H^j(F_k(M))$ for any fixed $i \geq 1$.

References

[CE17] Thomas Church and Jordan S. Ellenberg, Homology of FI-modules, Geom. Topol. 21 (2017), no. 4, 2373–2418. MR 3654111 1, 2, 4

[CMNR18] Thomas Church, Jeremy Miller, Rohit Nagpal, and Jens Reinhold, Linear and quadratic ranges in representation stability, Advances in Mathematics 333 (2018), 1–40. 1, 2

