# # For an irrep of W[n] that is *not* multiplicity-free with respect to # the action of W[n-1] (but has multiplicities no worse than two), # find a change of basis that optimizes the quality of the diagonal # entries in the orthogonal model. # Reference: Section 4B of "Explicit matrices for irreducible..." # # Set infolevel[orthopt]:=2 to see info about the optimization steps # Requires sparseops, unpack, and Rep data to be loaded orthopt:=proc(i,n) local ch,f,rep,N,a,b,j,eq,u,r; global Rep; if not assigned(Rep[i,n]) then ERROR(`build the rep first`) fi; ch:=listchains(i,Rep[0,n],n); rep:=map(proc(x,y) if x[y]<0 then -x[y] fi end,ch,n-Rep[0,n]); rep:=[op({op(rep)})]; b:=restore(n,n,ch); N:=nops(ch); for r in rep do a:=map(`orthopt/act`,[$1..N],ch,r,n-Rep[0,n],u); b:=fast_prod(a,fast_prod(b,a)); a:=zip((x,y)->coeff(x,cat('e',y)),b,[$1..N]); f:=`orthopt/bruteforce`(a,u); b:=simplify(subs({u[1]=f[1],u[2]=f[2]},b),'sqrt'); od; eq:={seq(cat('e',j)=e[op(ch[j])],j=1..N)}; for j to N do Rep[ch[j],n]:=subs(eq,b[j]) od; `Done` end; # Do a brute force search over positive rationals that parameterize the # space of renormalizations (we can skip negative rationals, since that # amounts to interchanging equivalent pairs of W[n-1]-submodules). `orthopt/bruteforce`:=proc(f,x) local a,b,j,k,rad,ht,h,p,z,z0; a:=map(proc(y) if not type(y,'rational') then y fi end,f); rad:=convert(indets(a,'sqrt'),`*`)^2; a:=subs({x[1]=1/sqrt(1+rad*z^2),x[2]=z*sqrt(rad)/sqrt(1+rad*z^2)},a); a:=map(factor,simplify(a,'sqrt')); z0:=0; ht:=ilcm(op(map(denom,subs(z=0,a)))); userinfo(2,orthopt,cat(`old denom `,ht)); for k from 2 to 100 do for j to k-1 do h:=denom(subs(z=j/(k-j),a[1])); for p in [2,3,5,7] do while irem(h,p,'b')=0 do h:=b od od; if h=1 then b:=subs(z=j/(k-j),a); h:=ilcm(op(map(denom,b))); if hr then cat('e',k) else T:=subsop(p=-ch[k][p],ch[k]); if not member(T,ch,'l') then ERROR(`this cannot happen`) fi; if ch[k][p]=r then x[1]*cat('e',k)+x[2]*cat('e',l) else x[2]*cat('e',l)-x[1]*cat('e',k) fi fi end: