# Viable graphs with <=13 edges for the Kontsevich conjecture. # gr[n,k] is the list of connected graphs with n vertices, k edges, # no cut vertex, no edge cutset of size 2, and no triple of vertices # satisfying N(u) \subseteq N(v),V(v'). # N.B.: gr[8,12][1] is the cube, gr[8,12][4] is the twisted cube. gr[5,8]:=[{{1,4},{2,4},{1,3},{2,3},{1,5},{2,5},{3,5},{4,5}}]: gr[6,9]:=[{{1,4},{3,4},{2,3},{1,5},{2,5},{4,5},{1,6},{2,6},{3,6}}, {{1,4},{2,4},{3,4},{1,5},{2,5},{3,5},{1,6},{2,6},{3,6}}]: gr[6,10]:=[{{1,4},{2,4},{1,3},{2,3},{1,5},{2,5},{4,5} ,{1,6},{2,6},{3,6}},{{1,4},{2,4},{3,4},{1,2},{1,5},{2,5},{3 ,5},{1,6},{2,6},{3,6}},{{1,4},{3,4},{1,2},{2,3},{1,5},{2,5} ,{4,5},{1,6},{2,6},{3,6}},{{1,4},{3,4},{2,3},{1,5},{2,5},{1 ,6},{2,6},{3,6},{4,6},{5,6}}]: gr[6,11]:=[{{1,4},{2,4},{4,6},{5,6},{1,5},{2,5},{1,3},{2,3},{2,6}, {3,6},{1,6}},{{3,4},{1,4},{2,4},{1,5},{2,5},{1,3},{2,3},{4,5}, {2,6},{3,6},{1,6}},{{3,4},{1,4},{2,4},{5,6},{3,5},{1,2},{1,3}, {2,3},{4,5},{2,6},{1,6}}]: gr[7,11]:=[{{1,4},{3,4},{1,5},{2,5},{4,5},{1,7},{2,7},{3,7},{1,6}, {2,6},{3,6}},{{1,4},{3,4},{2,3},{1,5},{3,5},{1,7},{2,7},{4,7},{1,6}, {2,6},{5,6}},{{1,4},{3,4},{2,3},{1,5},{3,5},{4,5},{1,7},{2,7},{6,7}, {1,6},{2,6}},{{1,4},{2,3},{1,5},{3,5},{4,5},{1,7},{2,7},{3,7},{1,6}, {2,6},{4,6}}]: gr[6,12]:=[{{1,4},{2,4},{4,6},{1,5},{2,5},{3,5},{1,3},{2,3},{4,5}, {2,6},{3,6},{1,6}}]: gr[7,12]:=[{{3,4},{2,4},{6,7},{1,7},{2,7},{1,5},{3,5},{1,3}, {2,3},{4,5},{2,6},{1,6}},{{1,4},{1,7},{2,7},{3,7},{4,6},{1,5}, {3,5} ,{1,2},{2,3},{4,5},{2,6},{1,6}},{{1,4},{2,4},{1,7},{2,7}, {3,7},{1,5},{2,5},{1,3},{4,5},{2,6},{3,6},{1,6}},{{3,4},{1,4} ,{1,7},{2,7},{3,7},{1,5},{2,5},{2,3},{4,5},{2,6},{3,6},{1,6 }},{{1,7},{2,7},{4,7},{4,6},{2,5},{3,5},{1,2},{1,3},{2,3},{4 ,5},{3,6},{1,6}},{{3,4},{1,4},{1,7},{2,7},{4,7},{5,6},{1,5} ,{3,5},{1,2},{2,3},{2,6},{1,6}},{{2,4},{1,7},{2,7},{3,7},{4 ,6},{1,5},{3,5},{1,3},{2,3},{4,5},{2,6},{1,6}},{{3,4},{1,4} ,{1,7},{2,7},{3,7},{1,5},{2,5},{1,2},{4,5},{2,6},{3,6},{1,6 }},{{3,4},{1,4},{2,4},{1,7},{2,7},{3,7},{1,5},{2,5},{3,5},{2 ,6},{3,6},{1,6}},{{3,4},{1,7},{2,7},{4,7},{5,6},{3,5},{1,2} ,{1,3},{2,3},{4,5},{2,6},{1,6}},{{3,4},{2,4},{1,7},{2,7},{4 ,7},{5,6},{1,5},{3,5},{1,3},{2,3},{2,6},{1,6}},{{3,4},{1,7} ,{2,7},{3,7},{4,6},{1,5},{2,5},{1,3},{2,3},{4,5},{2,6},{1,6 }},{{3,4},{2,4},{5,7},{6,7},{1,7},{2,7},{3,7},{4,7},{1,5},{3 ,5},{2,6},{1,6}},{{3,4},{5,7},{1,7},{2,7},{4,6},{2,5},{1,2} ,{1,3},{2,3},{4,5},{3,6},{1,6}},{{3,4},{1,7},{2,7},{4,7},{5 ,6},{2,5},{1,2},{1,3},{2,3},{4,5},{3,6},{1,6}}]: gr[8,12]:=[{{5,8},{6,8},{7,8},{1,4},{1,2},{1,3},{2,5},{3,5}, {3,7},{4,7},{2,6},{4,6}},{{5,8},{6,8},{7,8},{1,4},{1,2},{1,3}, {2,3},{2,5},{4,5},{4,7},{6,7},{3,6}},{{4,8},{5,8},{6,8},{1,4}, {1,2},{1,3},{2,3},{2,5},{4,7},{5,7},{6,7},{3,6}},{{4,8},{5,8}, {7,8},{1,4},{1,2},{1,3},{2,5},{3,5},{3,7},{6,7},{2,6},{4,6}}]: gr[7,13]:=[{{2,4},{5,7},{6,7},{1,7},{2,7},{3,7},{4,7},{1,5}, {1,2},{2,3},{4,5},{3,6},{1,6}},{{1,4},{2,4},{1,7},{2,7},{3,7}, {4,6},{1,5},{3,5},{1,3},{2,3},{4,5},{2,6},{1,6}},{{3,4},{1,4}, {1,7},{2,7},{3,7},{4,6},{2,5},{3,5},{1,2},{1,3},{4,5},{2,6},{ 1,6}},{{3,4},{1,4},{2,4},{1,7},{2,7},{3,7},{5,6},{1,5},{1,3} ,{2,3},{4,5},{2,6},{1,6}},{{3,4},{1,4},{2,4},{1,7},{2,7},{3 ,7},{4,6},{5,6},{1,5},{2,5},{3,5},{2,3},{1,6}},{{1,4},{2,4} ,{1,7},{2,7},{3,7},{1,5},{2,5},{1,3},{2,3},{4,5},{2,6},{3,6 },{1,6}},{{3,4},{1,4},{2,4},{1,7},{2,7},{3,7},{1,5},{2,5},{1 ,3},{4,5},{2,6},{3,6},{1,6}},{{3,4},{1,4},{2,4},{5,7},{1,7} ,{2,7},{4,6},{5,6},{1,5},{1,2},{1,3},{2,3},{3,6}},{{3,4},{1 ,4},{1,7},{2,7},{3,7},{1,5},{2,5},{1,2},{2,3},{4,5},{2,6},{ 3,6},{1,6}},{{1,4},{2,4},{6,7},{1,7},{3,7},{4,6},{1,5},{2,5} ,{3,5},{1,3},{2,3},{4,5},{2,6}},{{3,4},{1,4},{2,4},{1,7},{2 ,7},{4,7},{5,6},{1,5},{2,5},{3,5},{2,3},{3,6},{1,6}},{{3,4} ,{1,4},{2,4},{1,7},{2,7},{3,7},{1,5},{2,5},{3,5},{4,5},{2,6 },{3,6},{1,6}},{{3,4},{1,4},{2,4},{1,7},{2,7},{3,7},{1,5},{2 ,5},{3,5},{1,2},{2,6},{3,6},{1,6}},{{3,4},{1,4},{2,4},{2,7} ,{3,7},{4,7},{5,6},{1,5},{3,5},{1,2},{1,3},{2,6},{1,6}},{{3 ,4},{1,4},{1,7},{2,7},{3,7},{4,6},{1,5},{2,5},{3,5},{2,3},{ 4,5},{2,6},{1,6}},{{3,4},{1,4},{2,4},{1,7},{2,7},{3,7},{4,6} ,{5,6},{2,5},{3,5},{1,2},{1,3},{1,6}},{{3,4},{2,4},{1,7},{2 ,7},{4,7},{5,6},{1,5},{3,5},{1,2},{1,3},{2,3},{2,6},{1,6}}, {{3,4},{1,4},{2,4},{1,7},{2,7},{3,7},{5,6},{3,5},{1,2},{1,3} ,{4,5},{2,6},{1,6}},{{3,4},{1,4},{5,7},{6,7},{1,7},{2,7},{3 ,7},{4,7},{1,5},{2,5},{2,3},{2,6},{1,6}},{{1,4},{2,4},{6,7} ,{1,7},{2,7},{4,6},{1,5},{2,5},{3,5},{1,3},{2,3},{4,5},{3,6 }},{{3,4},{1,4},{2,4},{5,7},{1,7},{2,7},{5,6},{1,2},{1,3},{2 ,3},{4,5},{3,6},{1,6}},{{3,4},{1,4},{2,4},{6,7},{1,7},{2,7} ,{1,5},{2,5},{3,5},{2,3},{4,5},{3,6},{1,6}}]: gr[8,13]:=[{{4,8},{3,8},{6,8},{7,8},{2,4},{1,2},{1,3},{3 ,5},{4,5},{2,7},{5,7},{6,7},{1,6}},{{3,8},{5,8},{6,8},{7,8} ,{2,4},{1,2},{1,3},{3,5},{4,5},{2,7},{4,7},{6,7},{1,6}},{{4 ,8},{5,8},{6,8},{7,8},{1,4},{1,2},{1,3},{2,3},{2,5},{4,7},{ 5,7},{6,7},{3,6}},{{4,8},{5,8},{6,8},{7,8},{1,4},{1,2},{1,3} ,{2,3},{4,5},{2,7},{3,7},{6,7},{5,6}},{{4,8},{5,8},{6,8},{7 ,8},{2,4},{3,4},{1,2},{1,3},{1,5},{2,7},{3,7},{6,7},{5,6}}, {{4,8},{5,8},{6,8},{7,8},{2,4},{1,2},{1,3},{3,5},{1,7},{2,7} ,{3,7},{4,6},{5,6}},{{3,8},{6,8},{7,8},{2,4},{1,2},{1,3},{4 ,5},{1,7},{4,7},{5,7},{2,8},{3,6},{5,6}},{{4,8},{5,8},{6,8} ,{7,8},{1,4},{1,2},{1,3},{2,3},{2,5},{3,7},{5,7},{6,7},{4,6 }},{{3,8},{5,8},{6,8},{7,8},{2,4},{3,4},{1,2},{1,3},{1,5},{2 ,7},{4,7},{6,7},{5,6}},{{3,8},{5,8},{6,8},{7,8},{1,4},{1,2} ,{1,3},{2,3},{4,5},{2,7},{4,7},{6,7},{5,6}},{{4,8},{5,8},{6 ,8},{7,8},{2,4},{1,2},{1,3},{3,5},{4,5},{2,7},{3,7},{6,7},{ 1,6}},{{3,8},{5,8},{6,8},{7,8},{1,2},{1,3},{2,3},{4,5},{1,7} ,{2,7},{4,7},{4,6},{5,6}},{{4,8},{5,8},{6,8},{7,8},{1,4},{3 ,4},{1,2},{1,3},{2,5},{3,7},{5,7},{6,7},{2,6}},{{3,8},{6,8} ,{7,8},{2,4},{1,2},{1,3},{3,5},{1,7},{4,7},{5,7},{2,8},{4,6 },{5,6}},{{4,8},{5,8},{6,8},{7,8},{1,4},{2,4},{1,3},{2,3},{1 ,5},{3,7},{5,7},{6,7},{2,6}},{{4,8},{5,8},{6,8},{7,8},{2,4} ,{3,4},{1,2},{1,3},{1,5},{3,7},{5,7},{6,7},{2,6}},{{4,8},{3 ,8},{5,8},{6,8},{1,2},{1,3},{2,3},{4,5},{1,7},{2,7},{5,7},{ 6,7},{4,6}},{{4,8},{3,8},{5,8},{6,8},{1,4},{1,2},{1,3},{2,5} ,{3,7},{4,7},{5,7},{6,7},{2,6}},{{4,8},{3,8},{5,8},{6,8},{2 ,4},{1,2},{1,3},{3,5},{1,7},{2,7},{5,7},{6,7},{4,6}},{{4,8} ,{3,8},{5,8},{6,8},{1,4},{1,2},{2,3},{1,5},{2,7},{4,7},{5,7 },{6,7},{3,6}},{{4,8},{5,8},{6,8},{2,4},{1,2},{1,3},{3,5},{1 ,7},{3,7},{5,7},{6,7},{2,8},{4,6}},{{4,8},{3,8},{5,8},{6,8} ,{1,4},{1,2},{1,3},{2,5},{2,7},{4,7},{5,7},{6,7},{3,6}},{{4 ,8},{3,8},{5,8},{6,8},{1,4},{1,2},{1,3},{2,3},{2,7},{4,7},{ 5,7},{6,7},{5,6}},{{4,8},{3,8},{5,8},{6,8},{2,4},{3,4},{1,2} ,{1,3},{1,7},{2,7},{5,7},{6,7},{5,6}},{{3,8},{5,8},{6,8},{2 ,4},{1,2},{1,3},{3,5},{1,7},{4,7},{5,7},{6,7},{2,8},{4,6}}, {{3,8},{5,8},{6,8},{2,4},{3,4},{1,2},{1,3},{1,7},{4,7},{5,7} ,{6,7},{2,8},{5,6}},{{4,8},{3,8},{5,8},{6,8},{7,8},{1,4},{1 ,3},{2,3},{1,5},{2,7},{5,7},{2,6},{4,6}},{{4,8},{3,8},{5,8} ,{6,8},{7,8},{2,4},{3,4},{1,2},{1,3},{1,5},{5,7},{6,7},{2,6 }},{{4,8},{3,8},{5,8},{6,8},{7,8},{1,4},{1,3},{2,3},{1,5},{4 ,5},{2,7},{6,7},{2,6}},{{4,8},{3,8},{5,8},{6,8},{7,8},{1,4} ,{1,2},{1,3},{2,3},{2,5},{5,7},{6,7},{4,6}},{{4,8},{3,8},{5 ,8},{6,8},{7,8},{1,4},{2,4},{1,3},{2,3},{1,5},{5,7},{6,7},{ 2,6}},{{4,8},{3,8},{5,8},{6,8},{7,8},{1,4},{3,4},{1,2},{1,3} ,{2,5},{5,7},{6,7},{2,6}}]: