23 \ Z_p\text{-extensions II}

23.1 Ramification in a \ Z_p\text{-extension}

Let \ K be a number field and \ K_{\infty}/K \ a \ Z_p\text{-extension}. Let \ \Gamma = \text{Gal}(K_{\infty}/K). \ We \ will \ fix \ an \ isomorphism \ \Gamma \simeq \mathbb{Z}_p \ i.e. \ a \ topological \ generator \ \gamma \ for \ \Gamma.

Theorem 23.1. Let \ q be a prime of \ K that ramifies in \ K_{\infty}. Then

1. \ q must lie above \ p.

2. For \ n \ large enough, any prime of \ K_n \ lying over \ q \ is totally ramified in \ K_{\infty}/K_n.

Further, at least one prime of \ K (lying over \ p) must ramify in \ K_{\infty}/K.

Proof. Firstly, at least one prime of \ K must ramify in \ K_{\infty} since \ K_{\infty}/K \ is an infinite abelian extension and the maximal totally unramified abelian extension of \ K is finite. Let \ q be such a prime and let \ \Omega \ be a prime of \ K_{\infty} \ over \ q. \ The inertia group \ I(\Omega/q) \ is a nontrivial closed subgroup of \ \Gamma, \ hence \ must \ equal \ \Gamma^{p^n} \ for \ some \ integer \ n \geq 0. \ Let \ q_n \ denote \ the \ prime \ of \ K_n \ lying \ under \ \Omega. \ Then \ q_n \ is \ totally \ ramified \ in \ K_{\infty}/K_n, \ hence \ the \ same \ is \ true \ for \ all \ other \ primes \ of \ K_n \ lying \ over \ q. \ It \ only \ remains \ to \ show \ that \ q \ must \ lie \ over \ p. \ Firstly \ it \ is \ clear \ that \ q \ cannot \ be \ archimedean, \ for \ then \ I(\Omega/q) \ is \ of \ order \ 2 \ and \ \mathbb{Z}_p \ has \ no \ closed \ subgroups \ of \ finite \ index. \ So \ we \ may \ suppose \ that \ q \ lies \ over \ a \ finite \ prime \ q. \ We \ may \ also \ suppose \ without \ loss \ that \ q \ is totally ramified in \ K_{\infty} \ since \ this \ may \ be \ achieved \ by \ replacing \ K \ by \ K_n. \ (K_{\infty}/K_n \ is \ also \ a \ \mathbb{Z}_p\text{-extension}.)

Suppose \ q \neq p. \ Let \ m \ be \ a \ positive \ integer, \ and \ let \ F \ denote \ the \ completion \ of \ K \ at \ q \ and \ E \ that \ of \ K_m \ at \ q_m. \ The \ extension \ E/F \ is \ then \ a \ tamely \ (and \ totally) \ ramified \ Galois \ extension \ of \ local \ fields, \ of \ degree \ p^n. \ By \ the \ lemma \ below, \ p^n = [K_m : K] \ must \ divide \ N_{K/Q}(q) - 1, \ which \ gives \ a \ contradiction \ for \ m \ large \ enough. \ \Box

Lemma 23.2. Let \ F be a finite extension of \ Q_p, \ E/F \ a finite Galois extension that is tamely ramified (i.e. such that the ramification degree of \ E/F \ is prime to \ p.) Then the ramification degree \ e(E/F) \ divides \ |O_E/m_E| - 1, \ where \ O_E, m_E \ denote \ the \ ring \ of \ integers \ of \ E \ and \ its \ maximal \ ideal \ respectively. \ In particular, if \ E/F \ is also totally ramified, \ [E : F] \ divides \ |O_E/m_E| - 1.

Proof. We first recall some facts about higher ramification groups. Let \ F be as in the statement of the lemma and \ E \ any finite Galois extension of \ F \ with Galois group \ G = \text{Gal}(E/F). \ For \ i \geq -1, \ define \ subgroups \ G_i \ of \ G \ (the \ higher \ ramification \ groups) \ by

\[
G_i = \{ \sigma \in G : \sigma x \equiv x \mod m_E^{i+1} \ \text{for all} \ x \in O_E \}.
\]

Thus \ G_{-1} = G, \ G_0 \ is \ the \ inertia \ subgroup \ and \ the \ G_i \ give \ a \ filtration \ on \ G. \ Further \ for \ i \ large \ enough, \ G_i = 0. \ Let \ U_0 \ be \ the \ unit \ group \ of \ O_E \ and \ let \ U_i = 1 + m_i, \ so \ that \ the \ U_i \ give \ a \ descending \ filtration \ on \ U_0. \ Let \ \sigma \in G_i \ and \ let \ \pi \ be \ a \ uniformizer \ of \ O_E. \ Then \ \sigma \pi \equiv \pi \mod \pi^{i+1}, \ hence \ \sigma \pi/\pi \equiv 1 \mod \pi^i \ i.e. \ u := \sigma \pi/\pi \in U_i. \ Further, \ if \ \tau \in G_i \ also, \ then

\[
\frac{\tau \sigma \pi}{\pi} = \frac{\tau \pi}{\pi} \frac{\sigma \pi}{\pi} \frac{\tau u}{u}.
\]

Since \ \tau u \equiv u \mod \pi^{i+1}, \ we \ have \ \tau u/u \in U_{i+1}. \ Thus \ the \ map \ \sigma \mapsto \sigma \pi/\pi \ induces \ a \ homomorphism \ of \ G_i \ into \ U_i/U_{i+1}. \ Clearly \ G_{i+1} \ is \ in \ the \ kernel \ of \ this \ homomorphism.\n
We now return to the proof of the lemma. Without loss we may assume that E/F is totally ramified (replacing F by its maximal unramified extension in E.) We claim that with this assumption the homomorphism $G_i/G_{i+1} \to U_i/U_{i+1}$ is injective. Indeed, suppose $\sigma \in G_i$ is such that $\sigma \pi/\pi \equiv 1 \mod \pi^{i+1}$. Then $\sigma \pi \equiv \pi \mod \pi^{i+2}$. Let $u \in U$ be a unit and let u_0 be a unit in F such that $u \equiv u_0 \mod \pi$. (Such a u_0 exists since E/F is totally ramified.) Then $u = u_0 + \pi t$ for some $t \in \mathcal{O}_E$ and

$$\sigma u - u = (\sigma \pi)(\sigma t) - \pi t = (\sigma \pi - \pi)(\sigma t) + \pi(\sigma t - t) \equiv 0 \mod \pi^{i+2}.$$

It follows then that for any $x \in \mathcal{O}_E$, $\sigma x \equiv x \mod \pi^{i+2}$, so that $\sigma \in G_{i+1}$ as claimed.

Now for $i \geq 1$, U_i/U_{i+1} is a finite p-group. Since G_i/G_{i+1} has order prime to p and injects into U_i/U_{i+1}, we must have $G_i = G_{i+1}$. Since $G_i = 0$ for large i, it follows that $G_1 = 0$ as well. Thus the inertia group G_0 is isomorphic to a subgroup of $U_0/U_1 \simeq (\mathcal{O}_E/m_E)^\times \simeq (\mathcal{O}_F/m_F)^\times$, from which the lemma follows.

We will say that K_∞/K satisfies condition (TR) if every prime of K that is ramified in K_∞ is in fact totally ramified in K_∞. By the theorem above we see that if K_∞/K is a \mathbb{Z}_p-extension, then for n large enough, K_∞/K^n is a \mathbb{Z}_p-extension satisfying condition (TR).

23.2 The maximal unramified abelian p-extension of K_∞

Let K_∞/K be a \mathbb{Z}_p-extension. For each nonnegative integer n, let M_n be the maximal unramified abelian p-extension of K_n. Thus the Galois group $X_n = \text{Gal}(M_n/K_n) \simeq C_n$, the class group of K_n via the Artin map. The natural action of Γ_n on C_n translates into an action on X_n by conjugation. Indeed, M_n/K_0 is Galois, since K_n/K_0 is Galois and M_n is defined by a maximality property. If $\sigma \in \Gamma_n = \text{Gal}(K_n/K_0)$, we can lift σ to an element $\tilde{\sigma}$ in $G_n = \text{Gal}(M_n/K_0)$. Then σ acts on X_n via

$$\tau^\sigma = \tilde{\sigma} \tau \tilde{\sigma}^{-1}.$$

This is independent of the choice of $\tilde{\sigma}$, since X_n is abelian. This action makes X_n into a $\mathbb{Z}_p[\Gamma_n]$ module. Further the actions of Γ_n on X_n as n varies are compatible via the natural restriction map $X_{n+1} \to X_n$, so that the inverse limit $\lim X_n$ is naturally a $\mathbb{Z}_p[\Gamma]$-module. Since, via the Artin isomorphism, the norm map $N : C_{n+1} \to C_n$ translates into the natural restriction map $X_{n+1} \to X_n$, we have $C := \lim C_n \simeq \lim X_n$ as $\mathbb{Z}_p[\Gamma]$-modules.

Now for each m, K_{m+1}/K_m is totally ramified at some prime. Hence $K_\infty \cap M_n = K_n$ and $\text{Gal}(K_\infty M_n/K_\infty) \simeq X_n$. Clearly, $K_\infty M_n/K_\infty$ is unramified everywhere. We define $M_\infty := \bigcup M_n = \bigcup K_\infty M_n$. Then M_∞ is an unramified abelian p-extension of K_∞ with Galois group X naturally isomorphic to $\lim X_n$. Thus X has the structure of a $\mathbb{Z}_p[\Gamma]$-module, the corresponding action of Γ on X being just the conjugation action as above. (That this gives X the structure of a $\mathbb{Z}_p[\Gamma]$-module and not a $\mathbb{Z}_p[\Gamma]$-module reflects the fact that the action of Γ on X is continuous.)

Since $K_\infty M_n/K_0$ is Galois for all n, M_∞/K_0 is also Galois. We let $G := \text{Gal}(M_\infty/K_0)$. Then we have an exact sequence

$$0 \to X \to G \to \Gamma \to 0.$$

Proposition 23.3. M_∞ is the maximal unramified abelian p-extension of K_∞.

Proof. Without loss we may suppose that K_∞/K satisfies condition (TR). Let L/K_∞ be any finite unramified abelian p-extension. It will suffice to show that any such L is contained in M_∞. Let F
be the Galois closure of L over K_0. Since K_∞/K is Galois, F/K_∞ is a finite unramified abelian p-extension. If $H := \text{Gal}(F/K_\infty)$, there is an exact sequence

$$0 \to H \to \text{Gal}(F/K_0) \to \Gamma \to 0.$$

Thus Γ acts on H by conjugation. Since H is finite, this action must factor through a finite quotient of Γ, say Γ_n. Then by replacing K_0 by K_n, we may assume that the conjugation action of Γ on H is trivial.

Let p_1, \ldots, p_s denote the distinct primes of K that ramify in K_∞. For each j, let P_j denote the unique prime of K_∞ over p_j and pick a prime P_j of L lying over P_j. Denote by I_j the inertia group $I(P_j/p_j)$. For each j, $I_j \cap H = (1)$, since F/K_∞ is unramified. Further, the image of I_j in Γ is all of Γ since K_∞/K is totally ramified at p_j. Thus $I_j \simeq \Gamma$, and the inverse of this isomorphism splits the exact sequence above. Consequently $\text{Gal}(F/K_0)$ is abelian. Let n be such that p_n annihilates H. Since $G = I_j H$, we see that I_j^n is independent of j. Now replacing K_0 by K_n, we may assume that all the I_j are equal. We denote this group I, so that $\text{Gal}(F/K_0) = H \rtimes I$. Let L' be the fixed field of I in L. Then L'/K_0 is an unramified abelian p-extension of K_0, which must be contained in M_∞. Since $L = L' K_\infty$, we have $L \subset M_\infty$ as well. □

A similar argument shows the following:

Theorem 23.4. Suppose K_∞/K satisfies condition (TR). Let p_1, \ldots, p_s denote the distinct primes of K that ramify in K_∞. For each j, let P_j denote the unique prime of K_∞ over p_j and pick a prime P_j of L lying over P_j. Denote by I_j the inertia group $I(P_j/p_j)$. Then

1. The natural map $I_j \subset G \to \Gamma$ induces an isomorphism $I_j \simeq \Gamma$.
2. $I_j \cap X = (1)$.
3. G is the semidirect product of X and I_j i.e. $G = X \rtimes I_j$.
