Homework 2, due Feb 1

(1) Let $\zeta(s)$ denote the usual Riemann zeta function. Show that in a neighborhood of 1, the function $\log \zeta(s)$ differs from
\[
\sum_p \frac{1}{p^s}
\]
by a function that is analytic at $s = 1$. (Here p varies over the rational primes.)

(2) Next, let k be a number field and $\zeta_k(s)$ the zeta function of k. Show that $\log \zeta_k(s)$ differs from
\[
\sum_{p, \deg p = 1} \frac{1}{Np^s}
\]
by a function that is analytic at $s = 1$. (Here p varies over prime ideals in \mathcal{O}_k.)

(3) Let K/k be an extension of number fields. Show that the trace map from K to k is compatible with the inclusions $K \hookrightarrow \mathbb{A}_K$, $k \hookrightarrow \mathbb{A}_k$ and the trace map $\mathbb{A}_K \to \mathbb{A}_k$. Also state and prove an analog for the norm map.

(4) Let k be a number field, \mathbb{A}_k the adeles of k and J_k the ideles of k. Show that the topology on J_k is not the subspace topology that one gets from the inclusion $J_k \hookrightarrow \mathbb{A}_k$.

(5) Consider the inclusion $J_k \hookrightarrow \mathbb{A}_k \times \mathbb{A}_k$
given by $x \mapsto (x, x^{-1})$. Show that the topology on J_k is the subspace topology obtained by thinking of J_k as a subspace of $\mathbb{A}_k \times \mathbb{A}_k$ (with the product topology) via the map above.