Math 631: Problem Set 4

Due Friday October 3, 2008

1. **Morphisms of quasi-projective varieties.** Recall that by definition, a morphism of quasiprojective varieties is a map \(\phi : X \to Y \) (where say \(X \subset \mathbb{P}^n \) and \(Y \subset \mathbb{P}^m \)) such that every \(x \in X \) admits a non-empty open neighborhood \(U \) such that \(\phi(U) \subset U_i \) for some standard affine chart \(U_i \) of \(\mathbb{P}^m \) and

\[
\phi|_U : U \to Y \cap U_i \subset U_i = \mathbb{A}^m
\]

is given by

\[
y \mapsto (\phi_1(y), \ldots, \phi_m(y))
\]

where

\[
\phi_i \in \mathcal{O}_X(U).
\]

Prove that this definition is equivalent to each of the following:

a). For each point \(x \) in \(X \), there is a neighborhood of \(x \) where \(\phi \) agrees with (the restriction of) a polynomial mapping \(\mathbb{P}^n \to \mathbb{P}^m \) given by \(m+1 \) homogeneous polynomials of the same degree in \(n+1 \) variables, \(x_0 : \ldots : x_n \mapsto [F_0(x) : \ldots : F_m(x)] \).

b). For any affine covers \(\{U_\lambda\} \) of \(X \) and \(\{V_\mu\} \) of \(Y \) such that each \(\phi(U_\lambda) \) is contained in some \(V_\mu \), we have that \(\phi|_{U_\lambda} \) is a regular map (in the sense of affine varieties) from \(U_\lambda \) to \(V_\mu \).

Note that Definition b makes sense even for abstract varieties (as defined on problem set 2), whereas for many problems, Definition a turns out to be the easiest to work with.

2. **Compliments of Hypersurfaces are affine.** A hypersurface in \(\mathbb{P}^n \) is a Zariski closed set defined by a single (homogeneous) polynomial. If \(H \) is a hypersurface in \(\mathbb{P}^n \), show that \(\mathbb{P}^n - H \) is affine. (Hint: Do the case where \(H \) is hyperplane first, and think about the Veronese map to get the general case.)

3. **Hyperplane through general points.** Fix any \(n \) points in \(\mathbb{P}^n \). Prove that there is a hyperplane containing these \(n \) points, and that if the \(n \) points are in “general position,” then there is a unique hyperplane containing them all. Explain the meaning of “general position” in the context of this problem. For example, when \(n \) is two, it is clear that two points determine a line; general position here means the points are distinct.\(^1\)

4. **Hypersurfaces through points.** a). Fix a point \(P \in \mathbb{P}(V) = \mathbb{P}^n \). Show that the set of hypersurfaces of degree \(d \) in \(\mathbb{P}(V) \) passing through \(P \) is naturally parametrized by a hyperplane in the variety \(\mathbb{P}(\text{Sym}^d(V^*)) \) parametrizing all degree \(d \) hypersurfaces in \(\mathbb{P}(V) \).

b). Fix a natural number \(d \). Find \(q \) such that following sentence is meaningful (and true): “Through \(q \) general points in the projective plane, there passes a uniquely determined curve (ie, hypersurface in \(\mathbb{P}^2 \)) of degree \(d \).”

\(^1\)Caution: the meaning of the ubiquitous phrase “general position” in algebraic geometry varies depending on the context, even on this very problem set!
5. A non-affine, non-projective variety. Let X be the quasi-projective variety $\mathbb{A}^2 - \{(0,0)\}$. Find a simple presentation of the ring of regular functions on X (and prove it!). Use this to show that X can not be affine.

6. Every projective variety is defined by Quadrics. Let X be an arbitrary projective variety in \mathbb{P}^n.

a). Show that X can be described as the common zero set of a collection of homogeneous polynomials having all the same degree.

b). Show that X is isomorphic to a “linear section” of a Veronese n-fold. That is, there is some d such that X is isomorphic to a variety of the form $V_d \cap L$ where L is a linear variety in \mathbb{P}^N and V_d is the image of \mathbb{P}^n under the Veronese map ν_d.

c). Show that X is isomorphic to an intersection of quadrics. (A quadric is a hypersurface in projective space defined by a homogeneous polynomial of degree two.)

7. Grassmannians. Fix a vector space V of finite dimension n, over an arbitrary ground field k. Let $\mathbb{G}_d(V)$ denote the set of all d-dimensional subspaces of V. Thus $\mathbb{G}_1(V) = \mathbb{P}(V)$.

a). Explain how the set of lines in $\mathbb{P}(V)$ is naturally identified with the set $\mathbb{G}_2(V)$, and that in general, the linear spaces in $\mathbb{P}(V)$ of dimension d are the points in $\mathbb{G}_{d+1}(V)$.

b). Fix a basis for V, thereby identifying V with k^n. Use this to represent any d-dimensional subspace W as a $d \times n$ matrix of scalars, of full rank d.

c). Prove that two rank d matrices A_1 and A_2 of size $d \times n$ determine the same subspace W if and only if there exists an element $g \in GL(d,k)$ such that $A_1 = gA_2$. Conclude that the set $\mathbb{G}_d(V)$ can be identified (as a set) with the quotient of the set of all full rank $d \times n$ matrices by the natural action of $GL(d)$ on the left.\(^2\)

d). Show that $\mathbb{G}_d(V)$ is covered by $\binom{n}{d}$ sets U_I, each identified with affine space $\mathbb{A}^{d(n-d)}$ in a natural way. In the case $d = 1$, your cover should specialize to the standard affine cover of $\mathbb{P}(V)$.

e). Let U_1 and U_2 be two of the sets identified in (d), and let V_i be the subset of $\mathbb{A}^{d(n-d)}$ corresponding to $U_1 \cap U_2$ under the identifications $\phi_i : U_i \to \mathbb{A}^{d(n-d)}$. Prove that V_i is open in $\mathbb{A}^{d(n-d)}$, and explicitly describe the chart change map $\phi_2 \circ \phi_1^{-1}$.

f). Explain how $\mathbb{G}_d(V)$ is an abstract variety\(^3\) over any field k, a smooth manifold over \mathbb{R}, and a complex manifold over \mathbb{C} . What is its dimension?

\(^2\)If the ground field is, say \mathbb{R}, this endows $\mathbb{G}_d(V)$ with a natural structure as a topological space, which agrees with the Hausdorff topology on $\mathbb{P}(V)$ in the case $d = 1$.

\(^3\)Even better, on the next problem set, we will see that $\mathbb{G}_d(V)$ has an embedding into projective space which gives it the structure of a projective variety.