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These are the definitions you must understand and be able to state precisely to succeed in
Math 217. Some are different than in the textbook, which does not treat all concepts in the
generality you will need. We also list the crucially important Theorems and Propositions
you must know, and provide model proofs. In doing proofs in Math 217, you should refer to
this document for the correct definitions you will need, and for an example of how to clearly
write a proof.

This document does not replace the textbook, which also contains material you must
know. In particular, the texbook contains many important examples and computational
techniques that are crucial to succeeding in Math 217. For your convenience, we also provide
a list of the vocabulary and techniques from the book you should be sure to understand, but
we only list them briefly. Please refer to the book to make sure you fully understand
all the listed words and techniques. The book’s Summaries at the end of each section
are especially useful.

1. Chapter 1

The main idea is systems of linear equations, and matrices as a tool to
solve them.

Section 1.2. The book mentions vector spaces in 1.2 but does not give a careful definition
until Chapter 4. A vector space is a set with extra structure whose elements will be called
vectors. The extra structure consists of a natural addition and scalar multiplication,
which must obey certain familiar axioms. Here is the precise definition:

Definition 1.1. A vector space is a set V , equipped with a rule for addition of any two
vectors and for scalar multiplication of a vector by a scalar. The addition + must satisfy
the following axioms

(1) The set V is closed under addition: For any two vectors ~v and ~w of V , the sum ~v+ ~w
is also in V .

(2) Addition is commutative: For all ~v, ~w ∈ V , ~v + ~w = ~w + ~v.
(3) Addition is associative: For all ~v, ~w, ~y ∈ V , (~v + ~w) + ~y = ~v + (~w + ~y).
(4) There is an additive identity: that is, there exists ~0 ∈ V such that ~v +~0 = ~0 + ~v = ~v

for all ~v ∈ V .
(5) Every element has an additive inverse: for every ~v ∈ V , there exists a vector ~y ∈ V

such that ~v + ~y = ~y + ~v = 0.
1Thanks to Katie Maddon, Jordan Katz, Dominic Russell, Mark Spencer, Aarush Garg, Zhengxi Tan,

Shrikar Thodlar, Miranda Riggs, Suki Dasher, Margaret Ehinger, Betty Qi for useful remarks.
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The scalar multiplication must satisfy the following axioms

(6) The set V is closed under scalar multiplication: For any vector ~v in V and any scalar
λ ∈ R, the scalar multiple λ~v is also in V .

(7) For two scalars a, b ∈ R, we have a(b~v) = (ab)~v for all vectors ~v ∈ V .
(8) For 0 ∈ R, we have 0~v = ~0 for all ~v ∈ V .
(9) For 1 ∈ R, we have 1~v = ~v for all ~v ∈ V .

And finally, scalar multiplication distributes over addition:

(10) λ(~v + ~w) = λ(~v) + λ(~w) for all ~v, ~w ∈ V and all λ ∈ R.
(11) (a+ b)~v = a~v + b~v for all vectors ~v ∈ V and all scalars a, b,∈ R.

The only example the book gives at this point is the space Rn of column vectors (of size n)
with the usual addition and scalar multiplication. We will call this the coordinate space
of dimension n. Admittedly, this is a very important example, but there are many others.

Example 1.2. Examples of vector spaces:

(1) In multivariable calculus and physics, you learned a vector is a "directed magnitude"
represented by an arrow. The set of all such vectors (say, in 3-space) forms a vec-
tor space with the usual notion of vector addition (placing arrows "head-to-tail")
and scalar multiplication (scaling the magnitude). We call this vector space the
"coordinate-free space" of dimension three, and denote it E3.

(2) Let F be the set of all functions from R to R. Since high school, you have added such
functions (by simply adding the outputs) and multiplied them by scalars cf(x).The
set F forms a vector space with these familiar notions of addition and scalar multi-
plication. The constant function f(x) = 0 is the zero element in F .

(3) The set Rm×n of all m×n matrices is a vector space with the usual notion of addition
and scalar multiplication of matrices ("entry-by-entry").

(4) The set R[x] of all polynomials is a vector space with the usual notions of poly-
nomial addition and scalar multiplication. Even though it is possible to multiply
polynomials, this multiplication is not part of the vector space structure of R[x].

(5) The set of all solutions

x1x2
x3

 to the equation 5x1+3x2−x3 = 0 is vector space. Notice

two solutions to this equation can be added in an obvious way (componentwise, just
like in R3). Also, we can multiply any solution by a scalar multiple to get another
solution. You should run through the axioms of a vector space to convince yourself
that the solutions to the equation form a vector space. Indeed, the solutions to any
linear system of equations of the form A~x = ~0 is a vector space.
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Section 1.3.

Definition 1.3. A linear combination of vectors ~v1, . . . , ~vn is any vector ~v of the form
~v = a1~v1 + a2~v2 + · · ·+ an~vn.

In Section 1.3, the book defines linear combinations only in the context that the ~vi are
(column) vectors in coordinate space Rn. However, linear combinations are defined in any
context where "addition and scalar multiplication" make sense—that is, in any vector space.

Example 1.4. (1) Every vector
[
a
b

]
in R2 is a linear combination of the vectors ~e1 =

[
1
0

]
and ~e2 =

[
0
1

]
. Indeed,[

a
b

]
= a

[
1
0

]
+ b

[
0
1

]
= a~e1 + b~e2.

(2) More generally, every vector in Rn is a linear combination of the standard unit vectors
~e1, . . . , ~en.

(3) Consider the functions f(x) = sin2(x) and g(x) = cos2(x). These are vectors in the
vector space of all functions F from R to R. The constant function h(x) = 1 is a
linear combination of f and g. Indeed: for all x, we have

sin2(x) + cos2(x) = 1

so h(x) = f(x) + g(x).

Book Concepts you must master. Vocabulary: system of linear equations, consistent,
inconsistent, matrix, augmented matrix, row vector, column vector, elementary row oper-
ation, row-reduced echelon form (rref), leading one (or pivot) in rref, rank, free variables,
leading variables, linear combination, matrix addition and multiplication.

Important Skills: Solving linear systems of equations using the techniques described on
page 15 of textbook (see example on page 14-15). Using the book theorems 1.3.1, 1.3.3 and
1.3.4 on interpreting whether or not a linear system has no solutions, exactly one solution,
or infinitely many solutions. Computing the rank of a matrix and the row reduced echelon
form. Being able to determine when some vector is a linear combination of some given
vectors. These are not just computational techniques you can forgot after Chapter 1: all the
theory later will be built upon these technique.
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2. Chapter 2

The main idea is the concept of linear transformation, and matrices as a
tool to understand them.

Section 2.1: Linear Transformations.

Definition 2.1. Let V and W be vector spaces. A linear transformation is a mapping
V

T−→ W that satisfies both of the following two conditions:

(1) T (~x+ ~y) = T (~x) + T (~y) for all vectors ~x, ~y ∈ V ; and
(2) T (k~x) = kT (~x) for all vectors ~x ∈ V and all scalars k.

The vector space V is called the source or domain of T , whereas W is the target of T .

Example 2.2. Let A be an n×m matrix. The map

Rm TA−→ Rn

defined by left multiplication by A 
x1
x2
...
xm

 7→ A


x1
x2
...
xm


is a linear transformation. We call this the transformation given by left multiplication by the
matrix A.

Proof of Example: To prove TA is linear, we need to show that for all column vectors ~x, ~y ∈
Rm and all scalars k, that

TA(~x+ ~y) = TA(~x) + TA(~y) and TA(k~x) = kTA(~x),

that is, that TA respects addition and scalar multiplication. This follows from the definition
of TA and basic properties of matrix multiplication:

TA(~x+ ~y) = A(~x+ ~y) = A~x+ A~y = TA(~x) + TA(~y)

(the second equality comes from the distributive property of matrix multiplication) and

TA(k~x) = Ak~x = kA~x = kTA(~x).

�
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Remark 2.2.1. Somewhat misleadingly, the book gives only this example of a linear trans-
formation (and calls it the "definition"). However, there are many important examples of
vector spaces and linear transformations throughout mathematics, science and engineering,
many of which are already familiar to you. In Math 217, you must use the definition of lin-
ear transformation in this document and be able to apply it to examples beyond coordinate
space.

Example 2.3. Here are a few familiar examples of linear transformations. Identify the
source and target, and verify each is a linear transformation.

(1) The rotation map of the Cartesian plane rotating vectors counterclockwise by π
2
;

(2) The evaluation map f(x) 7→ f(0) from the space of all functions to R;
(3) The differentiation map on the space C∞ of infinitely differentiable functions.
(4) Let Rm×n be the vector space of m× n matrices. Fix any n× n matrix A. Then the

map
Rm×n RA−→ Rm×n defined by B 7→ BA

is a linear transformation. Similarly, if C is an m×m matrix, then the map

Rm×n LC−→ Rm×n defined by B 7→ CB

is a linear transformation. So both left and right multiplication by a fixed matrix is
linear. Be sure you can prove this, using the basic properties of matrix multiplication.

Important Special Case: The coordinate space Rn is the most important case of a
vector space because as we will soon see, many vector spaces can be modelled on Rn. There
is a useful concrete description of all linear transformations Rm → Rn:

Crucial Theorem 2.4. Let Rm T−→ Rn be a linear transformation. There exists a unique
matrix A such that for all ~x ∈ Rm, we have

T (~x) = A~x.

Morever, the matrix A is the n×m matrix

A =
[
T (~e1) T (~e2) . . . T (~em)

]
,

whose columns are the images of the standard unit vectors ~ej under T .

The Crucial Theorem guarantees that every linear transformation

Rm T−→ Rn

of coordinate spaces is a left multiplication by some matrix A, and gives us a recipe to find A.
This partially justifies why the book defines a linear transformation as a matrix multiplication
(see Definition 2.1.1 in the book). However, since many important vector spaces are not just
coordinate space, the book’s definition is inadequate for the more sophisticated mathematical
treatment you need to understand in Math 217.
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The proof of the Crucial Theorem uses the following Unreasonably Useful Lemma:

Lemma 2.5. Let A be an n×m matrix. The j-th column of A is the matrix product

A~ej

where ~ej is the j-th standard unit column vector.

Proof of Lemma: Exercise. �

Proof of the Crucial Theorem. Take ~x =


x1
x2
...
xm

 from the source Rm. Write

~x = x1~e1 + x2~e2 + · · ·+ xm~em.

Applying T , and using the fact that T is linear, we have
T (~x) =T (x1~e1 + x2~e2 + · · ·+ xn~em)

=x1T (~e1) + x2T (~e2) + · · ·+ xmT (~em)

=
[
T (~e1) T (~e2) . . . T (~em)

] 
x1
x2
...
xm

 .
Thus for any vector ~x, we have T (~x) = A~x, where A is the matrix as defined in the theorem.

It remains to be shown that A is the unique matrix with this property. Suppose, on the
contrary, that there is some other matrix B such that

T (~x) = B~x

for all vectors ~x ∈ Rm. Then for all vectors ~x ∈ Rm, we have
A~x = B~x.

In particular, taking ~x to be the standard unit column vector ~ej, we have
A~ej = B~ej

for each ~ej ∈ Rm. By the Unreasonably Useful Lemma, we conclude that the j-th columns
and A and B are the same. Since this holds for each of the n columns of the matrices A and
B, we conclude that A = B. �

Definition 2.6. An isomorphism of vector spaces is a bijective (or invertible) linear trans-
formation.
Vector spaces V and W are isomorphic if there exists an isomorphism V

T−→ W .
The inverse of an isomorphism V

T−→ W is the unique map W
T−1

−→ V assigning to each
~w ∈ W the unique vector ~v in V such that T (~v) = ~w.
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Example 2.7. The transpose map sending each row vector
[
a1 a2 . . . an

]
to the corre-

sponding column vector


a1
a2
...
an

 defines an isomorphism

R1×n → Rn×1 = Rn.

Of course, the space of row vectors is not really any different from the space of column vectors,
since we can write any row as a column and vice-versa. This intuitive idea of “essentially the
same after renaming" is exactly what we mean by isomorphism.

Example 2.8. Consider the map C → R2 sending a complex number x + iy to the point[
x
y

]
in the coordinate plane. This is an isomorphism, as you should check.

Example 2.9. Let A be any invertible n × n matrix. The map Rn TA−→ Rn given by left
multiplication by A is an invertible linear transformation, hence an isomorphism. To
prove that this map is bijective, we need to show that for every ~y in the target Rn, there
is a unique ~x in the source Rn such that TA(~x) = ~y. This is easy: take ~x = A−1~y (check
it!). The inverse map is given by multiplication by the inverse matrix A−1. There are many
different invertible n× n matrices, hence many different self-isomorphisms2 of Rn.

Proposition 2.10. Let V T−→ W be an isomorphism of vector spaces. The inverse map
W

T−1

−→ V is also linear, hence also an isomorphism.

Proof. We need to check that
T−1(~w1 + ~w2) = T−1(~w1) + T−1(~w2) and T−1(k ~w1) = kT−1(~w1)

for all ~w1, ~w2 ∈ W and all scalars k.

Suppose T−1(~w1) = ~v1 and T−1(~w2) = ~v2. By definition of T−1, this means that T (~v1) = ~w1

and T (~v2) = ~w2. So because T is linear, T (~v1 +~v2) = T (~v1) + T (~v2) = ~w1 + ~w2, which shows
that T−1(~w1 + ~w2) = ~v1 + ~v2 (again, by the definition of the inverse map T−1). Thus T−1
respects addition.

Likewise, linearity of T guarantees that T (k~v1) = kT (~v1) = k ~w1. This means that
T−1(k ~w1) = k~v1. So T−1(k ~w1) = kT−1(~w1), showing that T−1 respects scalar multiplication
as well. �

We can think of an isomorphism as a "renaming" of elements. The inverse isomorphism
T−1 "undoes the renaming."

2Often called automorphisms, with the prefix "auto" meaning "self."
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Section 2.3: Composition of linear transformations and matrix products.

Theorem 2.11. A composition of linear transformations V T−→ W
S−→ Q, where V,W and

Q are vector spaces, is linear.

Proof. We need to verify that S ◦ T satisfies the two conditions of Definition 2.1:

(1) (S ◦ T )(~x+ ~y) = (S ◦ T )(~x) + (S ◦ T )(~y) for all vectors ~x, ~y in V ; and
(2) (S ◦ T )(k~x) = k(S ◦ T )(~x) for all vectors ~x ∈ V and all scalars k.

First,

(S◦T )(~x+~y) = S(T (~x+~y)) = S(T (~x)+T (~y)) = S(T (~x))+S(T (~y)) = (S◦T )(~x)+(S◦T )(~y),
where the linearity of T justifies the second equality and the linearity of S justifies the third.
So S ◦ T respects addition.

Similarly,

(S ◦ T )(k~x) = S(T (k~x)) = S(kT (~x)) = kS(T~x)) = k(S ◦ T )(~x).
So S ◦ T respects scalar multiplication. Thus S ◦ T is linear. �

What about composing maps of coordinate spaces? In this case, we know that linear maps
are given by matrix multiplication. What is the matrix of a composition?

Theorem 2.12. Consider a composition of linear transformations Rm TA−→ Rn TB−→ Rp,
where A is the matrix of TA and B is the matrix of TB. Then the matrix of the composition
TB ◦ TA is BA. That is,

TB ◦ TA = TBA.

Proof. We compute
(TB ◦ TA)(~x) = TB(A~x) = B(A~x) = (BA)~x

where the third equality comes from the associative property of matrix multiplication. So
the map TB ◦ TA is the same as left multiplication by the matrix BA. �

Section 2.4: Invertibility of Linear Transformations and Matrices.

Definition 2.13. A matrix A is invertible if there exists a matrix B such that AB = BA =
In, an n× n identity matrix.

The matrix B is called the inverse of A. Of course, A is the inverse of B as well. We
write A−1 for the inverse of A, when it exists.

Invertible matrices are square (you proved this on Homework Set 2). If you already know
A is square, the next Proposition will save you a lot of effort in checking invertibility:
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Proposition 2.14. Let A be an n×n matrix. Then A is invertible if and only if there exists
a matrix B such that AB = In or such that BA = In. That is, for a square matrix A we
only need to check one of the products AB or BA is the identity in order to conclude A is
invertible.

Proof. This is proved in the textbook. See Theorem 2.4.8 there. �

Proposition 2.15. A linear transformation Rn T−→ Rn is invertible if and only if the cor-
responding matrix is invertible.

Proof. First assume Rn T−→ Rn is invertible. Let A be the n×n matrix such that T (~x) = A~x
for all ~x ∈ Rn. Because T is invertible, its inverse T−1 is also linear (by Proposition 2.10).
Let B be the matrix of T−1. The composition T ◦ T−1 is the identity map, hence its matrix
is the identity matrix. On the other hand, its matrix is also AB, using Theorem 2.12.
Hence AB = In. Similarly, because T−1 ◦ T is the identity map, we conclude BA = In. So
AB = BA = In, and A is invertible.

Conversely, assume that A is invertible, with inverse A−1. To see that the linear map TA
given by multiplication by A is invertible, we observe that the map TA−1 given by multipli-
cation by A−1 is the inverse of TA. Indeed, TA ◦ TA−1 = TA−1 ◦ TA = TIn by Theorem 2.12,
and multiplication by In is clearly the identity map. �

Proposition 2.16. Let A be an n× n matrix. Thinking of A as the coefficient matrix of a
system of n linear equations in n unknowns, we have that A is invertible if and only if the
system A~x = ~b has a unique solution for all ~b ∈ Rn. Moreover, if there is a unique solution
for one ~b ∈ Rn, there is a unique solution for every ~b ∈ Rn.

Proof. This is essentially a rephrasing of Proposition 2.15 in terms of linear equations. Let
Rn TA−→ Rn be the linear transformation ~x 7→ A~x. We know that TA is invertible (or bijective)
if and only if the matrix A is invertible. Furthermore, by definition, TA is bijective if and
only if for all ~b in the target Rn, there is a unique ~x in the source Rn such that TA(~a) = ~b.
That is, A is invertible if and only if the system A~x = ~b has a unique solution for all ~b ∈ Rn.

The final statement is true because A is square: think about the process of row-reducing
the augmented matrix A |~b to find the solutions. There is a unique solution if and only if
rref(A) is the identity matrix, regardless of what ~b is. �

Remark 2.16.1. With notation as in the Proposition 2.16, the unique solution to A~x = ~b

is of course the vector A−1~b. Check it!
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Remark 2.16.2. It is important in Proposition 2.14 that A is square. The statement "If
AB = In then A is invertible" is false without the hypothesis that the matrices are square.
Here is a counterexample:[

1 0 0
0 1 0

]
·

1 0
0 1
0 0

 =

[
1 0
0 1

]
, but

1 0
0 1
0 0

 · [1 0 0
0 1 0

]
=

1 0 0
0 0 0
0 0 0

 .

Book Concepts you must Master from Chapter 2. Vocabulary: linear transfor-
mation, matrix of a linear transformation, coordinate space Rn, standard unit vectors ~ej,
domain (or source), target, image, injective, surjective, bijective, invertible map, invertible
matrix, inverse map, inverse matrix, names for basic algebraic properties (commutative, as-
sociative, distributive, additive or multiplicative identity, additive or multiplicative inverse,
etc).

Important Skills: Verifying given maps are linear transformations using Definition 2.1,
recognizing common linear transformation (including rotations, projections, reflections),
finding the matrix of a linear transformation (e.g. by computing the columns, thinking
about the images of ~ej). You must be able to use Theorems 2.1.2 and 2.1.3.

You should be fast and accurate at multiplying matrices, and be adept at thinking of
matrix multiplication in many ways (eg, in Thm 2.3.2 for AB you could write B as a row of
columns [C1 C2 · · · Cn] and then AB is the matrix [AC1 AC2 · · · ACn]). You should
know how to find the matrix of a composition of linear transformations. You should have an
arsenal of counterexamples ready: matrices A and B that don’t commute, non-zero matrices
A and B such that AB = 0, etc.

You must know how to find the inverse of a given matrix. Make sure you can use the
technique explained in Theorem 2.4.5 (and demonstrated just prior, starting with Example
1 on page 90 but summarized succintly near the top of page 91). You should be able to
immediately write down the inverse of a 2×2 matrix; see Theorem 2.4.9. You should be able
to tell if a matrix is invertible (Thms 2.4.3, 2.4.7, 2.4.8, 2.4.9) and understand how inverse
matrices come up in solving systems (Thm 2.4.4). You should also know all the equivalent
characterizations of invertible matrices in Summary 3.1.8 on page 118.
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3. Chapter 3

The main idea is the concept of a BASIS for a vector space. This gives us
the important notion of DIMENSION of vector space.

A Deep idea is that bases allow us introduce COORDINATES for any
vector space, so we can model any (finite dimensional) vector space on the
coordinate space Rn and any linear transformation by left matrix multipli-
cation.

Section 3.1. Span, Kernel and Image.

Definition 3.1. The span of a set {~v1, . . . , ~vn} of vectors is the set all linear combinations.
That is,

Span{~v1, . . . , ~vn} = {c1~v1 + c2~v2 + · · ·+ cn~vn | ci ∈ R}.

Example 3.2. (1) Let ~e1 and ~e2 be the standard unit vectors in R3. Their span in R3

is the xy-plane, or in set-notation, {

xy
0

 |x, y ∈ R}. Similarly, the vectors

10
1

 and

01
0


also span a plane through the origin in R3. It is the plane {

 x
y
−x

 |x, y ∈ R}. We

can also describe it as the plane in R3 defined by the equation x = z.
(2) Consider the subset {1, x, x2, x3} of the vector space of all polynomials. Its span is

the set of all polynomials of degree at most three.
(3) The most obvious spanning set for the coordinate space R3 is the set of the three

standard unit vectors ~e1, ~e2, ~e3. However, this is definitely not the only spanning set.

The space R3 is also spanned by

11
1

,
−11

1

, and
 0
−1
0

, although this is less obvious

(prove it!). It is also spanned by the four vectors ~e1, ~e2, ~e3, and

11
1

, although one

might reasonably argue that the fourth vector is redundant.
(4) A line through the origin in R3 is a vector space. It is spanned by any non-zero vector

in it. Do you see why?
(5) The vector space R[x] of all polynomials is spanned by the polynomials {1, x, x2, x3, . . . }.

No finite subset spans R[x]. Do you see why?
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Remark 3.2.1. We can also define the span of an infinite set S as the collection of all linear
combinations of elements in S. That is, Span S = {c1~v1 + c2~v2 + · · ·+ cn~vn |~vi ∈ S ci ∈ R}.

Definition 3.3. The kernel of a linear transformation V T−→ W of vector spaces is the set
of all vectors ~v in the source such that T (~v) = ~0. That is,

kerT = {~v ∈ V |T (~v) = ~0}.

Definition 3.4. The image of a linear transformation V T−→ W of vector spaces is the set
of all vectors ~w in the target such that there exists ~v in the source such that T (~v) = ~w. That
is,

imT = {~w ∈ W | there exists some ~v ∈ V with T (~v) = ~w}.

Proposition 3.5. A linear transformation V T−→ W is injective if and only if its kernel is
trivial.

Proof. Suppose T is injective. Take ~v in the kernel of T . Then T (~v) = 0. But also T (~0) = ~0.
So ~v and ~0 have the same image under T . By definition of injective, ~v = ~0. So the kernel of
T can contain only the zero element.

Conversely, suppose ker T is zero. If T (~v) = T (~w), then because T is linear, T (~v− ~w) = ~0.
So ~v − ~w is in the kernel, making ~v = ~w. Thus T is injective. �

An important special case is when our source and target are coordinate spaces Rn. This
is the case from which you should draw your intuition, and the only case the book discusses
at this point. The next two propositions describe how to think about the kernel and image
in these cases.

Theorem 3.6. Let Rm TA−→ Rn be defined by TA(~x) = A~x for some n×m matrix A. Then

(1) The kernel of TA is the space of solutions to the linear system A~x = ~0.
(2) The image of TA is the span of the columns of A.

Proof. For (1): The kernel of TA is the set of ~x such that TA~x = ~0. By definition of TA, this
is the set of all ~x such that A~x = ~0, or the solutions to the linear system A~x = ~0.

For (2): The vectors in the image of TA are those of the form

TA(


x1
x2
...
xm

) = TA(x1~e1 + x2~e2 + · · ·+ xm~em).
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Using the linearity of TA, this is the same as

x1TA(~e1) + x2TA(~e2) + · · ·+ xmTA(~em).

But the vectors TA(~ej) = A~ej are the columns of the matrix A (by the Unreasonably Use-
ful Lemma). So the vectors in the image of TA are those that can be written as linear
combinations of the columns of A. That is, the image of TA is the span of the columns of
A. �

Remark 3.6.1. A common abuse of language is to say "kernel A" and "image A" instead
of "kernel TA" and "image TA." We always interpret the kernel and image "of a matrix"
to mean the kernel and image of the corresponding linear transformation given by (left)
multiplication by this matrix.

Example 3.7. Consider the map R3 T−→ R3 defined by T (

xy
z

) =
x+ y + z

y
x+ z

 . This map

can also be described as T (~x) = A~x where A =

1 1 1
0 1 0
1 0 1

 . According to the previous

proposition, the kernel of T is the solution space of the system of linear equations

A~x = ~0,

which is the line spanned by

 1
0
−1

 . And the image is the span of the vectors

10
1

 ,
11
0

 ,
10
1

 .
Of course, this image is thus the plane spanned by the two vectors

10
1

 , and
11
0

 in R3,

since the third column gives no additional information.

Section 3.2: Subspaces and Bases.

Definition 3.8. A subspace of a vector space V is a non-empty subset W which is closed
under addition and scalar multiplication. That is, a subspace is a non-empty subset W of
V such that

(1) The zero vector (of V ) is in W .
(2) If ~x, ~y ∈ W , then also ~x+ ~y ∈ W ;
(3) If ~x ∈ W and k is any scalar, then also k~x ∈ W .

13



In the book, in Chapter 3, the only subspaces considered are subspaces of Rn. The general
case comes in Chapter 4.

Example 3.9. Any line or plane through the origin in R3 is a subspace. In fact, these are
the only subspaces of R3, besides the zero vector space {0} and the whole space R3.

Every subspace is a vector space in its own right. Thus lines and planes through the
origin in R3 are vector spaces. In reading math, when you see that words "Let V be a vector
space," a plane in R3 or a higher dimensional analog, is a pretty good picture to have in
mind. This is the only example the book treats in Chapter 3.

Proof of Example 3.9. A line through the origin consists of all vectors of the form {t

a1a2
a3

 | t ∈ R}. Adding

two such we have

t1

a1a2
a3

+ t2

a1a2
a3

 = (t1 + t2)

a1a2
a3

 ,

so such a line is closed under addition. Scalar multiplying we have

k(t1

a1a2
a3

) = (kt1)

a1a2
a3

 ,

so it is also closed under scalar multiplication.

Similarly, a plane through the origin will consist of all points satisfying the equation ax+ by + cz = 0. Ifx1

y1
z1

 and

x2

y2
z2

 are two points in this plane, then ax1 + by1 + cz1 = 0 and ax2 + by2 + cz2 = 0, so also

a(x1 + x2) + b(y1 + y2) + c(z1 + z2) = 0,

so

x1 + x2

y1 + y2
z1 + z2

 lies on on the plane as well. Thus the plane is closed under addition. Likewise, if ax1 + by1 +

cz1 = 0, then also a(kx1) + b(ky1) + c(kz1) = 0. So if

x1

y1
z1

 is on the plane, then any scalar multiple is also

on the plane. �

Remark 3.9.1. Strictly speaking, we do not need to explicitly assume (1) in Definition 3.8
of subspace, because (3) implies (1). [To see this, observe that for any ~x ∈ W , closure under
scalar multiplication imples that 0·~x = ~0 ∈ W .3] However, sometimes (1) is useful in checking
quickly that W is NOT a subspace. The reason we include (1) in the definition above is to
emphasize it: experience shows students sometimes forget subspaces always contain ~0.

Proposition 3.10. Let T : V → W be a linear transformation of vector spaces.
3This argument requires that W has some vector ~x in it to start—that is, that W is non-empty. The

empty set is not a vector space.
14



(1) The kernel of T is a subspace of the source V .
(2) The image of T is a subspace of the target W .

Proof. (1) To show the kernel of T is a subspace of V , we must show that the ker T is closed
under addition and scalar multiplication.

Take ~v1 and ~v2 in ker T . By definition of kernel, T (~v1) = 0 and T (~v2) = 0. Because T is
linear, we know T (~v1) + T (~v2) = T (~v1 +~v2) = 0. So ~v1 +~v2 is in the kernel of T . This shows
the kernel of T is closed under addition.

Take ~v ∈ ker T . By definition, this means that T (~v) = 0. So for any scalar, kT (~v) =
k · 0 = 0. By linearity of T , we have T (k~v) = 0. This shows that k~v is in the kernel of T .
So the kernel is closed also under scalar multiplication. We conclude that the kernel is a
subspace.

(2) To show the image of T is a subspace of W , we must show that im T is closed under
addition and scalar multiplication.

Take ~w1 and ~w2 in the image of T . By definition, this means T (~v1) = ~w1 and T (~v2) = ~w2

for some ~v1, ~v2 ∈ V . Because T is linear, we have

T (~v1 + ~v2) = T (~v1) + T (~v2) = ~w1 + ~w2,

so that also ~w1 + ~w2 is in the image of T . So im T is closed under addition.

Similarly, if ~w is in the image, we can write T (~v) = ~w for some ~v ∈ V . So for any scalar k,

k ~w = kT (~v) = T (k~v),

showing that k ~w is in the image. So the image of T is closed under both addition and scalar
multiplication. We conclude that im T is a subspace. �

Proposition 3.11. Let V be a vector space and S any subset. The Span of S is a subspace
of V .

Proof. We need to show:

(1) If ~v1 and ~v2 are in the span of S, then also ~v1 + ~v2 is in the span of S;
(2) If ~v is in the span of S and k is any scalar, then k~v is in the span of S.

I leave this for you: use the definition of span, write out what it means that a vector in the
span of S and check these two properties. This will complete the proof. Come see me if you
are not 100 % sure you have done this correctly. �
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Linear Independence.

Definition 3.12. A relation on a set of vectors {~v1, . . . , ~vn} is any expression of the form

c1~v1 + c2~v2 + · · ·+ cn~vn = 0,

where the ci are scalars. That is, a relation is a linear combination that equals the zero
vector.

Every set {~v1, ~v2, . . . , ~vn} has the trivial relation:
0 · ~v1 + 0 · ~v2 + · · ·+ 0 · ~vn = 0.

We say a relation
c1~v1 + c2~v2 + · · ·+ cn~vn = 0

is non-trivial if at least one of the coefficients ci is non-zero.

Definition 3.13. A set of vectors {~v1, . . . , ~vn} is linearly independent if the only relation
is the trivial relation— that is, whenever c1~v1 + c2~v2 + · · · + cn~vn = 0 for some scalars ci,
then c1 = c2 = · · · = cn = 0.

Example 3.14. (1) A one-element set {~v} is linearly independent, provided ~v 6= 0.
(2) The vectors ~e1, ~e2, ~e3 in R3 are linearly independent. To prove this, consider a relation

c1~e1 + c2~e2 + c3~e3 = 0.

Expanding out, this says that

c1c2
c3

 = ~0, which is possible only if the ci are all zero.

So every relation on the vectors ~e1, ~e2, ~e3 is trivial. By definition, the vectors ~e1, ~e2, ~e3
are linearly independent.

Proposition 3.15. A two-element set {~v1, ~v2} is linearly independent if and only if neither
vector is a multiple of the other.

Proof. Suppose that {~v1, ~v2} is linearly independent. We use “proof by contradiction" to
show that neither vector is a multiple of the other. Suppose on the contrary that c~v1 = ~v2.
Then we have a relation

c~v1 + (−1)~v2 = 0.

Since the relation is non-trivial (−1 6= 0), this contradicts linear independence. A similar
argument (reversing the roles of ~v1 and ~v2) shows that if c~v2 = ~v1, we also get a contradiction.

Conversely, suppose neither vector is a multiple of the other. We need to show that {~v1, ~v2}
is linearly independent. If not, then there there is a non-trivial relation

c1~v1 + c2~v2 = 0.

At least one of the ci is not zero, say c1 6= 0. Then rearranging, we have ~v1 = −c2
c1
~v2, contrary

to assumption. We can argue similarly if c2 6= 0. �
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Remark 3.15.1. You can also define relations and linear independence for an infinite set
S. An (arbitrary) set S of vectors is linearly independent if c1~v2 + · · · + cn~vn = 0 for some
~vi vectors in S and some scalars ci in R, then c1 = c2 = · · · = cn = 0. That is, a (possibly
infinite) set S is linearly independent it has no non-trivial relations.

The definition of linear independence is probably the trickiest so far. Please memorize
it as stated here; doing so will help you with proofs. For vectors ~v1, . . . , ~vm in Rn, the book
gives many useful ways to think about whether or not they are linearly independent. Please
study Summary 3.2.9 carefully on page 129.

Bases.

Definition 3.16. A basis for a vector space V is a set of vectors which is both linearly
independent and spans V .

Example 3.17. Some natural bases for familiar vector spaces:

(1) A basis for Rn is the set ~e1, ~e2, . . . , ~en. This is called the standard basis.
(2) A basis for the space R2×2 of 2× 2 matrices is

{
[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
}.

(3) A basis for the vector space C of complex numbers is {1, i}.
(4) A basis for the vector space P4 of polynomials of degree at most four is

{1, x, x2, x3, x4}.
(5) A basis for the vector space R[x] of all polynomials is {1, x, x2, . . . }.

(6) The planeW in R3 defined by x+y+z = 0 is a vector space with basis {

 1
0
−1

 ,
 0

1
−1

}.
This example shows that not every vector space has an obvious or natural basis. For

example, another basis for W is {

 1
−1
0

 ,
 0
−1
1

}.
Theorem 3.18. If a subset B is a basis for a vector space V , then every element ~v in V can
be written uniquely as a linear combination vectors in B.

Proof. Take ~v ∈ V . Because B spans V , we know that ~v can be written as a linear com-
bination of the elements of B. To show this is unique, suppose we can write ~v as a linear
combination in two ways. Write

~v = a1~v1 + a2~v2 + · · ·+ an~vn = c1~v1 + c2~v2 + · · ·+ cn~vn
17



where the ~vi are in B and the ai and ci are scalars (some could be zero). Subtract one
expression from the other to get

0 = (a1 − c1)~v1 + (a2 − c2)~v2 + · · ·+ (an − cn)~vn.

Because the ~vi are elements of a basis, they are linearly independent. So by definition, this
relation on the ~vi must be trivial. This means that ai = ci for all i. Thus the expression for
~v as a linear combination of the basis elements is unique. �

The next two theorems are helpful for our intuition about bases:

Theorem 3.19. Let V be a vector space.

(1) A set of vectors is a basis if and only if it is a minimal spanning set.
(2) A set of vectors is a basis if and only if it is a maximal linearly independent set.

We write down the proof of Theorem 3.19 for finite sets of vectors only. The proof is the
same for infinite sets but the notation is somewhat more clumsy.

Proof of Theorem 3.19. (1) Let {~v1, . . . , ~vn} be a minimal spanning set of vectors in V . This means that
removing any vector from this set will produce a set that fails to span V . To show this set is a basis, we
only need to show it is linearly independent, since we already know it spans.

Suppose, on the contrary, that we have a non-trivial relation

c1~v1 + c2~v2 + · · ·+ cn~vn = 0.

Some coefficient, say ci, is not zero. Rearranging, we have

~vi = −
c1
ci

~v1 −
c2
ci

~v2 − · · · − î− · · · − cn
ci

~vn,

where the notation î means the ~vi term is omitted. This shows that ~vi is in the span of the smaller set
{~v1, . . . , î, . . . , ~vn}. So the smaller set {~v1, . . . , î, . . . , ~vn} in fact spans all of V , contrary to the minimality of
the original spanning set. This contradiction establishes that the set {~v1, . . . , ~vn} is linearly independent. So
it is a basis.

For the converse, assume {~v1, . . . , ~vn} is a basis. To prove that it is a minimal spanning set, suppose on
the contrary, that removing (say, after relabling the vectors) ~vn is also a spanning set for V . This means
that ~vn = c1~v1 + · · ·+ cn−1~vn−1. But then we have the relation c1~v1 + · · ·+ cn−1~vn−1 − ~vn = 0, contrary to
the assumption that the set is basis.

(2) Let {~v1, . . . , ~vn} be a maximal set of linearly independent vectors in V . This means that adding
any vector to this set will make it linearly dependent. We only need to check that the set spans V , since we
know already the set is linearly independent.

Take an arbitrary ~w ∈ V . Since {~v1, . . . , ~vn, ~w} is linearly dependent, there is a non-trivial relation

c1~v1 + c2~v2 + · · ·+ cn~vn + a~w = 0.
18



Note that a 6= 0, because otherwise we would have a non-trivial relation on the set {~v1, . . . , ~vn}, contrary to
assumption. Hence, rearranging, we have

~w = −c1
a
~v1 −

c2
a
~v2 − · · · −

cn
a

~vn.

This says that ~w is in the span of {~v1, . . . , ~vn}. So the set {~v1, . . . , ~vn} spans V and hence is a basis.

Conversely, assume {~v1, . . . , ~vn} is a basis. Suppose it is not a maximal linearly independent set. Then
we can add some vector ~w so that {~v1, . . . , ~vn, ~w} is linearly independent. Because {~v1, . . . , ~vn} spans V , we
can write ~w = c1~v1 + c2~v2 + · · · + cn~vn for some scalars ci. But then c1~v1 + c2~v2 + · · · + cn~vn − w = 0 is
a non-trivial relation, contrary to the linear independence of {~v1, . . . , ~vn, ~w}. This contradiction establishes
that {~v1, . . . , ~vn} is a maximal linearly independent set. �

Theorem 3.20. Every vector space has a basis.

Proof. This is actually a hard theorem to prove in the infinite dimensional case. It is more
straightforward in the finite dimensional case. We omit this proof for now. �

Section 3.3. Dimension. Vector spaces typically have many bases, but the number of
elements in any basis is always the same:

Theorem 3.21. All bases of a vector space have the same number (possibly infinite) of
elements.

Proof. Fix a vector space V . If all bases for V are infinite, the theorem holds. So assume V
has a finite basis {~v1, . . . , ~vn}. We need to show every basis for V has n elements. This is
proved in the book, Theorem 3.3.2. We will give a different proof in Section 3.4. �

Definition 3.22. The dimension of a vector space is the number of vectors in a basis.

Note that the dimension can be infinite.

Example 3.23. Referring to the bases we found in Example 3.17, we see Rn has dimension
n, the space R2×2 has dimension 4, the space of complex numbers has dimension 2, the space
P4 (of polynomials of degree four or less) has dimension 5, the space R[x] (of all polynomials)
has infinite dimension, and the plane W has dimension 2.

Theorem 3.24. Let V be a vector space. The dimension of V is the maximal number of
linearly independent vectors in V . Alternatively, the dimension of V is the minimal number
of vectors needed to span V .

Proof. This is really a corollary of Theorem 3.19. Since a maximal set of linearly independent
elements in V is a basis (by Theorem 3.19), we know the number of elements in such a set
is the dimension. Likewise, since a minimal spanning set is a basis (by Theorem 3.19), we
know the number of elements in such a set is the dimension. �
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Corollary 3.25. Let V be a vector space of dimension n and let B = {~v1, . . . , ~vn} be any set
of n vectors. Then B spans V if and only if B is linearly independent.

Proof. Suppose B spans V . Since V is n-dimensional, the minimal number of spanning
vectors is n by Theorem 3.24. So B is a minimal spanning set—if we remove any vectors we
have a smaller set so it can’t span. This means B is a basis by Theorem 3.19, so the elements
are linearly independent.

Conversely, suppose the n vectors of B are linearly independent. Since V is n- dimensional,
this means B is a maximal linearly independent set—adding any extra vector to it would
produce a linearly dependent set. So B is a basis, and so must also span V . �

Proof Tip: These theorems imply that if V has dimension n and we have n vectors
{~v1, . . . , ~vn}, then to check they are a basis we can check either they are linearly independent
or they span V . This can significantly shorten your struggle in many proofs.

The book restates these results in the following useful form:

Book Theorem 3.3.4: Let V be a vector space of dimension m. Then

(1) We can find at most m linearly independent vectors in V .
(2) We need at least m vectors to span V .
(3) Any set of m linearly independent vectors in V is a basis.
(4) Any set of m vectors which spans V is a basis.

Actually, the theorem in the book states this only in the special case that V is a subspace
of Rn. The proof is exactly the same.

The Rank-Nullity Theorem. This is my number one most favorite useful theorem of
Math 217.

Theorem 3.26. Rank-Nullity Theorem. Let V T−→ W be a linear transformation,
where V is finite dimensional. Then

dimV = dim ker T + dim im T.

That is: "dimension of kernel plus dimension of image = dimension of source."

The reason for the name "Rank-Nullity theorem" comes from some older terminology in
linear algebra: The nullity of T is the dimension of the kernel. The rank of a linear
transformation T is the dimension of the image. The next result ensures this terminology is
consistent with our previous definition of rank.
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Theorem 3.27. If Rm TA−→ Rn is the transformation given by left multiplication by the
matrix A, the dimension of the image of TA is the rank of the corresponding matrix A.

Proof. This is Theorem 3.3.6 in the book. �

Example 3.28. Consider the linear transformation Rm TA−→ Rn given by left multiplication
by the n×m matrix A. The kernel is the solution space of the linear system

A~x = 0.

As you know from chapter one, this solution space will have d free variables, where d is the
total number of variables m minus the rank of A (number of leading ones in rref(A)). The
d free variables means that the kernel is d-dimensional, where d = m − rank(A). So we
recover

dim(source) = dim(kernel) + dim(image).

Example 3.29. Consider the projection R3 → R2 sending

xy
z

 7→ [
x
y

]
. The kernel is the

z-axis, which has basis

00
1

; hence the kernel has dimension one. The image is all of R2,

hence has dimension two. This confirms that 2 + 1 = 3, the dimension of the source R3.

The next theorem is useful in practice to check whether column vectors are linearly inde-
pendent.

Theorem 3.30. Column vectors ~v1, . . . , ~vd in Rn are linearly independent if and only if the
n× d matrix [~v1 ~v2 . . . ~vd] has rank d. In particular, vectors ~v1, . . . , ~vn in Rn are a basis for
Rn if the n× n matrix formed by its columns is invertible.
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3.4 Coordinates.

Section 3.4 is so important, it should really be its own chapter called Representing
Vectors by Columns and Transformations by Matrices. A lot of it will make
more sense to you after reading Chapter 4 of the book, especially 4.3. My writeup called
"Change of Coordinates and All That" should help, too. This section is really the heart of
Math 217–the deepest and hardest and most important. You will need to reread the material
many times and in different presentations.4

Let V be a vector space with basis {~v1, ~v2, . . . , ~vn}. Recall that vector ~v in V can be written
uniquely as

~v = a1~v1 + a2~v2 + · · ·+ an~vn

for some scalars ai (by Theorem 3.18).

Definition 3.31. Let V be a vector space with basis B = {~v1, ~v2, . . . , ~vn}. The B-coordinates
of a vector ~v in V are the unique scalars a1, . . . , an such that

~v = a1~v1 + a2~v2 + · · ·+ an~vn.

We usually gather the coordinates into a column vector
a1
a2
...
an

 ,
called the B-coordinate column vector of ~v. We also write [~v]B for this column vector.

Example 3.32. (1) Let S be the standard basis {~e1, . . . , ~en} for Rn. Then the S-

coordinates of a vector ~x =

x1...
xn

 are just the standard coordinates, since

~x = x1~e1 + x2~e2 + · · ·+ xn~en.

4The book only covers in Chapter 3 a special case of what we do here , though it does get to this in
Chapter 4. If you are overwhelmed and just want to make it through Exam 1, it is OK to focus on reading
3.4 from the book for now. For a deeper understanding, you will want to read this as soon as you feel ready,
or at the latest, when we are officially covering Section 4.3 in the book after Exam 1. That being said, I
think if you feel confident on the material in the earlier parts of this document (at least definitions, example,
statements of theorems, and some proofs of more basic theorems), reading this while trying to understand
3.4 in the book will help you understand what is "really going on" so could help on Exam 1 as well. But
don’t stress over this section instead of practicing computations from the book if that’s what you need, since
some of this goes beyond what you need for Exam 1. For Exam 1, you only need the material from 3.4 in
the book (and of course, everything that came before). That section deals with the special case of Theorem
3.42 when V = Rn and Theorem 3.53. Both are in the book in Section 3.4.
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That is,

[~x]S =

x1...
xn

 .
So the coordinates with respect to the standard basis are simply the usual coordinates
you already know.

(2) Let V ⊂ R3 be plane spanned by two vectors ~v1 and ~v2, as in Example 1 of page
147 of the textbook. Each point of the plane is a unique combination a~v1 + b~v2. The

coordinates with respect to the basis {~v1, ~v2} are thus
[
a
b

]
. Please study this example

in the book, which continues through page 148 up to the top of page 149, since I
can’t draw as nice picture as they have.

(3) Consider the vector space C, with basis {1, i}. The coordinates of z = x + yi with

respect to this basis are
[
x
y

]
.

(4) Consider the vector space R2×2 of two-by-two matrices with basis

B =

{
E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]}
.

Then the B-coordinates of the matrix
[
a b
c d

]
are


a
b
c
d

 .
If we instead use the basis

C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 1

]
,

[
1 0
1 0

]}

for R2×2, then the C-coordinates of a matrix
[
a b
c d

]
are


a− c+ d

b
d

c− d

 .

A crucial idea is that coordinates let us identify a vector space with Rn:

Theorem 3.33. Let V be a vector space with basis B = {~v1, ~v2, . . . , ~vn}. The map

V
LB−→ Rn

sending each ~v to its B-coordinates
~v 7→ [~v]B

is an isomorphism of vector spaces, called the coordinate isomorphism with respect to B.

Remember that an isomorphism is a bijective linear transformation— a way of saying
two vector spaces are “essentially the same, just with different names." In this theorem, the
target Rn is the space of B-coordinates for V . Basically, the coordinate isomorphism is a
"labelling" of all the vectors in V by their coordinates (with respect to the basis B).
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Example 3.34. (1) Consider the vector space C, with basis {1, i}. The “obvious map"

C→ R2 sending x+ yi 7→
[
x
y

]
is an isomorphism of vector spaces—it is the coordinate isomorphism determined by
the basis {1, i}.

(2) The “obvious map"

R2×2 → R4 sending
[
a b
c d

]
7→


a
b
c
d


is the precisely the coordinate isomorphism induced by the basis {E11, E12, E21, E22}
described in Example 3.32 above.

(3) If we had picked more exotic bases for either of the example in (1) and (2), we would
get different isomorphisms. For example, the basis C for R2×2 discussed in Example
3.32 gives the isomorphism

R2×2 → R4 sending
[
a b
c d

]
7→


a− c+ d

b
d

c− d

 .
Not all bases are created equal—part of the art of being a good user of linear algebra
is choosing convenient bases in which to study your problem.

Example 3.35. Take any basis B = {~v1, . . . , ~vn} for V . The B coordinate of the ~vi are

[~v1]B =


1
0
...
0

 , [~v2]B =


0
1
...
0

 , . . . , [~vn]B =


0
0
...
1

 .
So the vector x1~v1 + · · ·+ xn~vn is expressed in B-coordinates as

[x1~v1 + · · ·+ xn~vn]B =


x1
x2
...
xn

 .

Note that ~vj 7→ ~ej under this isomorphism. So, when we identify V with Rn using B-
coordinates, the basis B gets identified with the standard basis for Rn.

We can now easily prove that every basis has the same number of elements:
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Proof of Theorem 3.21. We have already observed that it suffices to consider only finite
bases. Let B = {~v1, ~v2, . . . , ~vn} and A = {~w1, ~w2, . . . , ~wm} be two different bases for V . We
need to show m = n. The coordinate isomorphisms

V
LB−→ Rn and V

LA−→ Rm

give two different isomorphisms of V with coordinate spaces. The composition

Rn L−1
B−→ V

LA−→ Rm

is an isomorphism as well. The corresponding m × n matrix of the composition, therefore,
is invertible. So m = n. �

Remark 3.35.1. Of course, R2 has many different bases. So there are many different ways to
coordinatize R2 (or indeed any vector space). There is one way you have been studying since
middle school—namely the standard Cartesian coordinates (or “x-y coordinates"), which is
the coordinate system given by the standard basis. Non-standard coordinates on Rn can
be confusing because we are so brainwashed to think in standard coordinates. You might
wonder why one would want to use a non-standard basis for Rn. It turns out that for many
problems, a clever choice of basis will be very helpful. We will see this already in Examples
3.49 and 3.48 here, but it will be a major theme both in Chapters 5 (where we will choose
orthonormal bases for Rn) and in Chapter 7 (where we will choose eigenbases for Rn).

Remark 3.35.2. Some vector spaces, like Rn, come with a canonical (meaning, "natural" or
"obvious") choice of basis. For Rn, we can easily argue that the standard basis is a canonical
basis. For polynomials, we have the obvious basis {1, x, x2, . . . }. For matrices, the basis
as in Example 3.32. Of course, all these vector spaces also have non-standard bases, which
depending on the problem you are trying to solve, might turn out to be more convenient.

Remark 3.35.3. Many vector spaces don’t come with a “natural choice" of coordinates:
think of the plane W defined by x+ y + z = 0 in R3. If we fix a basis for W , say

B = {

 1
−1
0

 ,
 1

0
−1

},
we can “coordinatize" W which allows us to think of this 2-dimensional vector space as a
copy of R2. But an equally reasonable choice of basis is

A = {

 1
0
−1

 ,
 0

1
−1

}.
The coordinates of a vector, say ~v =

 3
4
−7

 are different in these bases! Note that

~v = 3

 1
0
−1

+ 4

 0
1
−1

 ,
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so

[~v]A =

[
3
4

]
whereas [~v]B =

[
−4
7

]
.

So, if you are a scientist or engineer or mathematician trying to communicate with another,
you need to have a systematic way to understand and compare coordinates in different bases.

Comparing different Coordinates. An important issue to understand is this: If
we have two different bases for V , say B and A, how do the B-coordinates and A-coordinates
compare?

Theorem 3.36. Let B and A be two different bases for an n-dimensional vector space V .
The map from the space of B-coordinates to the space of A-coordinates

Rn → Rn [~v]B 7→ [~v]A

is a bijective linear map— that is, an isomorphism. In particular, this map is given by left
multiplication by the n× n matrix

SB→A =
[
[~v1]A [~v2]A · · · [~vn]A

]
,

whose columns are the elements of the basis B expressed in A-coordinates.

Definition 3.37. The matrix

SB→A =
[
[~v1]A [~v2]A · · · [~vn]A

]
.

of Theorem 3.36 is called the change of basis matrix from B to A. It can also be defined
as the unique matrix such that

SB→A · [~v]B = [~v]A

for all vectors ~v in V .

The matrix SB→A transforms the column of B-coordinates of each ~v into its column of A-
coordinates, so the change of basis matrix is often called the "change of coordinates matrix."

Example 3.38. Consider the vector space Rn. Let us compare coordinates in the standard
basis S = {~e1, . . . , ~en} to coordinates in some non-standard basis B = {~v1, . . . , ~vn} for
Rn. What is the matrix that will change the B-coordinates of a vector into the standard
coordinates? To figure this out, we need to see where the standard unit vectors ~ei are taken.
We have

~ei = [~vi]B 7→ [~vi]S

which is simply the column vector ~vi. Hence we have again verified that the change of
coordinate matrix is the matrix

SB→A = [~v1 ~v2 . . . ~vn].

This is the only case the book considers in Chapter 3. The general case is in Chapter 4.
26



Caution: Do not confuse SB→A with SA→B, which is the matrix transforming A-coordinates
into B-coordinates! Of course, these transformations are inverse to each other (do you see
why?) Thus their matrices are as well. We state and prove this formally in Proposition 3.41
below.

Example 3.39. The vector space R2 has nonstandard basis B =

{[
1
2

]
,

[
2
−1

]}
. How do we

convert coordinates in this basis to coordinates in the standard basis A = {~e1, ~e2}—that is,
to standard coordinates?

Theorem 3.36 tells us we must multiply the column of B-coordinates by

SB→A =

[
1 2
2 −1

]
to transform to standard coordinates. Let’s check this for the vector ~v =

[
3
1

]
. Since ~v =

~v1 + ~v2, its B-coordinates are
[
1
1

]
. We convert to standard coordinates by multiplying by

SB→A:

[~v]B =

[
1
1

]
7→
[
1 2
2 −1

] [
1
1

]
=

[
3
1

]
= [~v]A,

where is of course ~v expressed in standard coordinates!

Computation Tip: It is almost always easier to find the change of basis matrix from a less
standard basis to a more standard one. Go ahead and directly try to compute the matrix
SA→B in Example 3.39 by writing the vectors ~ei as a linear combination of the {~v1, ~v2}. You
will see what I mean. By contrast, notice how simple it was to find the change of basis
matrix SB→A to the standard basis.

Example 3.40. Let P1 be the vector space of polynomials of degree 1 or less. Its elements
are the functions5 of the form f(x) = mx+ b. It has an "obvious" basis A = {1, x}. Another
basis is B = {1, x− 1}. The change of basis matrix from B to A is easy to find:

SB→A = [[1]A [x− 1]A] =

[
1 −1
0 1

]
.

We can use this to convert from B-coordinates to A as follows:

[c+ d(x− 1)]B =

[
c
d

]
7→
[
1 −1
0 1

]
·
[
c
d

]
=

[
c− d
d

]
= [c+ d(x− 1)]A.

This reflects the fact that we can write the polynomial c+d(x−1) as (c−d)+dx. To find the
matrix SA→B, instead of directly computing from Definition 3.37, we can just invert SB→A.
So

SA→B = [SB→A]
−1 =

[
1 1
0 1

]
.

5which are usually called "linear functions" though they are not linear transformations if b 6= 0.
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Proof of Theorem 3.36. This map is the composition of the coordinate isomorphisms from
Theorem 3.33:

Rn L−1
B−→ V

LA−→ Rn [~v]B 7→ ~v 7→ [~v]A,

hence it is also an isomorphism.

Because it is a linear transformation Rn → Rn, we know it is given by multiplication by
some matrix S. We can find S by finding each of its columns. We know that the j-th column
of S is the image of ~ej under the transformation.6 So let’s follow ~ej through the composition:

Rn L−1
B−→ V

LA−→ Rn

~ej 7→ ~vj 7→ [~vj]A.

Note here that ~ej maps to ~vj since [~vj]B = ~ej. Thus the j-th column of the matrix S is [~vj]A,
as claimed.

�

Proposition 3.41. With notation as in Definition 3.37, we have SA→B = [SB→A]
−1.

Proof. For any vector ~v ∈ V , we have matrix multiplications

SA→B · SB→A · [~v]B = SA→B · [~v]A = [~v]B,

by the definition of the change of basis matrix. So

(SA→B · SB→A) · [~v]B = [~v]B,

which means that SA→B · SB→A represents the identity map, hence must be In. So

SA→B · SB→A = In.

Since both matrices are n× n, we conclude that they are inverse to each other (Proposition
2.14). That is, SA→B = S−1B→A. �

Modelling linear transformations by matrix multiplication. Suppose we have a linear
transformation

V
T−→ V.

Fix a basis for V , say B = {~v1, . . . , ~vn}. Then we can think of V as "modelled on" Rn by
identifying each vector with its coordinate column. Does this mean we can think of the
linear transformation T as "modelled on" a linear transformation

Rn −→ Rn

of the B-coordinate space? The answer is YES!

6These three sentences are all coming from the Crucial Theorem 2.4. If those lines don’t make sense, you
should go reread the Section 2.1, and talk about it with as many people as you can.
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Crucial Theorem 3.42. New and Improved Version. Let B = {~v1, . . . , ~vn} be a basis
for the vector space V . Let V T−→ V be a linear transformation. Then the corresponding
map of B-coordinate columns

[~v]B 7→ [T (~v)]B

is a linear transformation Rn → Rn. Moreover, the matrix of this transformation is the n×n
matrix

[T ]B =
[
[T (~v1)]B [T (~v2)]B . . . [T (~vn)]B

]
,

whose j-th column is T (~vj) expressed in the basis B. That is,

[T (~v)]B = [T ]B · [~v]B,
for every vector ~v ∈ V .

Definition 3.43. The matrix [T ]B in Theorem 3.42 is called thematrix of T with respect
to the basis B, or simply the B-matrix of T . That is, the B matrix of T is the n × n
matrix

[T ]B =
[
[T (~v1)]B [T (~v2)]B . . . [T (~vn)]B

]
.

Example 3.44. Consider the map T : C→ C sending z 7→ iz. It is easy to check that this
is linear. The standard identification of C with R2 is the coordinate isomorphism defined by

the basis {1, i} for C. This map identifies z = x+ iy with the column vector
[
x
y

]
. Note that

T (x+ iy) = −y + ix, so the corresponding linear map of the coordinate-spaces is

R2 → R2 sending
[
x
y

]
7→
[
−y
x

]
which has matrix

[
0 −1
1 0

]
. Thus the matrix of T with respect to the basis {1, i} is

[
0 −1
1 0

]
.

You should also check that its columns are the images of the basis elements 1 and i under
T , expressed again in B-coordinates.

Proof of Theorem 3.42. The map [~v]B 7→ [T (~v)]B is the composition

Rn L−1
B−→ V

T−→ V
LB−→ Rn.

Since a composition of linear transformations is linear, this map is linear.

To find the matrix of the composition, we use the Crucial Theorem 2.4. We know the map
is given by some matrix, and we just need to figure out which one. We find it by finding
each column: we know the j-th column should be the image of ~ej under this composition.
To figure out the image of ~ej for each j, follow ~ej through the composition map:

~ej 7→ ~vj 7→ T (~vj) 7→ [T (~vj)]B,

where the last vector is the column of B-coordinates for T (~vj). [Here, the first arrow ~ej 7→ ~vj
is because [~vj]B = ~ej.] So the j-th column of [T ]B is [T (~vj)]B, as claimed. �
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Theorem 3.42 says that any linear transformation V −→ V can be treated like a linear
transformation Rn → Rn simply by identifying V with the B-coordinate space Rn. Thus, we
have a way of thinking of any linear transformation as a matrix multiplication!

Example 3.45. Let P4 be the vector space of polynomials of degree four or less. Consider
the map d : P4 → P4 sending f 7→ f ′. A basis for P4 is B = {1, x, x2, x3, x4}. Under d,
we compute the image of each basis element, expressed in B-coordinates, to find the matrix.
For example, we compute the third column of the B-matrix in detail as follows:

The third element in the B-basis is x2.
We apply the transformation d to obtain 2x.
We then rewrite this result as a linear combination of the basis B to find the B-coordinates:
0 · 1 + 2 · x+ 0 · x2 + 0 · x3 + 0 · x4.

Thus the third column of the B-matrix is [d(x2)]B =


0
2
0
0
0

 .

Doing this for each column, we see that the matrix of d with respect to B is
0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0

 .

Example 3.46. Let Rn TA−→ Rm be left multiplication by A. What is the matrix of TA in
the standard basis? Using Definition 3.43, we recover precisely A, as you should check! So
you have already mastered the process of finding B-matrices in the important case where
V = Rn and B is the standard basis.

One more time, we rephrase the Crucial Theorem and reprove it once more:

Crucial Theorem 3.47. Let V be a vector space of dimension n with basis B = {~v1, . . . , ~vn}.
Let T : V → V be a linear transformation. Let

[T ]B =
[
[T (~v1)]B [T (~v2)]B . . . [T (~vn)]B

]
.

be the B-matrix of T . Then for any vector ~v, we can compute

“the B-coordinate column vector of T (~v) = the matrix product [T ]B · [~v]B.”

Proof. Since ~v1, . . . , ~vn is a basis for V , we can write an arbitrary ~v ∈ V as

~v = x1~v1 + x2~v2 + . . . xn~vn.

So by linearity,
T (~v) = x1T (~v1) + x2T (~v2) + . . . xnT (~vn).

30



So also for coordinate columns:

[T (~v)]B = x1[T (~v1)]B + x2[T (~v2)]B + · · ·+ xn[T (~vn)]B.

That is

[T (~v)]B = [[T (~v1)]B [T (~v2)]B . . . [T (~vn)]B]


x1
x2
...
xn

 .
In more compact notation, this says

[T (~v)]B = [T ]B · [~v]B
for every vector ~v ∈ V . �

Example 3.48. Consider the map π : R2 → R2 given by projection onto the line spanned
by ~u1. Let ~u2 be any vector perpendicular to ~u1. Note that B = {~u1, ~u2} is a basis for R2.
What is the B-matrix of π? We compute

π(~u1) = ~u1 = 1~u1 + 0~u2, π(~u2) = 0 = 0~u1 + 0~u2.

So the coordinates of the images of the basis elements are
[
0
1

]
and

[
0
0

]
. So the B-matrix is[

0 0
1 0

]
.

As you might imagine, the linear transformation in these coordinates is easier to understand
than the one we worked out in Chapter 2, Section 2.

Example 3.49. Consider the map R2 T−→ R2 given by multiplication by
[
2 1
1 2

]
. How can

we understand it geometrically? If we instead use the basis B = {
[
1
1

]
,

[
−1
1

]
}, we compute

[T ]B =

[
3 0
0 1

]
.

This means that T stretches all vectors in the ~v1 direction by 3, while fixing all vectors in
the direction of ~v2. Sketch the square in the source R2 determined by the basis B and its
image in the target B.

Comparing matrices of T in Different Bases. An important issue to understand
is this: If I have two different bases for V , say B and A, how do the B-matrix and A matrix
of a linear transformation V T−→ V compare?
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Theorem 3.50. Let V be an n-dimensional vector space, and let V T−→ V be a linear
transformation. Suppose that B and A are two different bases for V . Then

[T ]B = S−1 · [T ]A · S

where S = SB→A is the change of basis matrix from B to A coordinates.

Definition 3.51. Two n×n matrices A and B are similar if there exists an invertible n×n
matrix S such that B = S−1AS.

Proposition 3.52. Fix a linear transformation V T−→ V . The B-matrices of T in different
bases are all similar to each other.

Proof. If B is the matrix of T with respect to B and A is the matrix of T with respect to A,
then B = S−1AS where S = SB→A is the change of basis matrix from B to A. �

Proof of Theorem 3.50. We need to check that the two matrices [T ]B and S−1 · [T ]A · S are
the same matrix. To do this, we can check that they have the same jth column for each
j = 1, 2, . . . n. Using the Unreasonably Useful Lemma, we can get at the j-th column of each
by multiplying by ~ej.

To compute S−1 · [T ]A · S, recall that the j-th column of S is ~vj expressed in the basis A.
So

(S−1 · [T ]A · S) · ~ej = (S−1 · [T ]A) · (S · ~ej) = (S−1 · [T ]A) · [~vj]A = S−1 · ([T ]A · [~vj]A).

But by definition of [T ]A, we have [T ]A · [~v]A = [T (~v)]A for all vectors ~v, so in particular,

(S−1 · [T ]AS)~ej = S−1 · ([T ]A · [~vj]A) = S−1 · [T (~v)]A.

But of course S−1 is the matrix which transforms A-coordinates into B-coordinates, so this
is

[T (~vj)]B.

We have just shown that the j-th column of S−1 · [T ]A · S is precisely [T (~vj)]B. So we have
an equality of matrices

S−1 · [T ]A · S = [T ]B.

�
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Non-Standard Coordinates on Rn. Of course, Rn has many basis. How does the B-
matrix of a fixed transformation compare to the standard matrix? The preceding discussion
specializes as follows:

Theorem 3.53. Fix a linear transformation Rn TA−→ Rn given by multiplication by the n×n
matrix A. Let B = {~v1, ~v2, . . . , ~vn} be a basis for Rn. Then the B matrix of T and the
standard matrix of T are related by

[T ]B = S−1AS,

where S is the matrix formed from the basis B, that is
S =

[
~v1 ~v2 . . . ~vn

]
.

This Theorem is really just a special case of Theorem 3.50. Do you see why? The book
treats all of the preceding material in Chapter 3 only in the case V = Rn and compares B-
matrices only to standard matrices. They treat the general case in Chapter 4. I personally
think it is actually easier to understand the general case, where we are less “brainwashed"
to rely on standard coordinates.

Book Concepts you must know from Chapter 3. Additional Vocabulary from
Book Chapter 3: Image, span, subspace, relation, trivial relation, linearly dependent, lin-
early independent, basis, dimension, kernel, Rank-Nullity Theorem, coordinates, the change
of basis/coordinates matrix, the B-matrix of linear transformation (or the matrix of a linear
transformation with respect to basis B), standard matrix, similar matrices.

Important Skills from Book Chapter 3: checking if vectors are linearly indepen-
dent, in particular, you should know the characterizations in Summary 3.2.9 of the book.
Finding a basis for a vector space, finding the kernel and image of a linear transformation
(Example 1 on p 136—be sure to know Theorem 3.3.5 from the book, as well as Theorem
3.3.8), computing the dimension of a vector space, using the rank-nullity theorem, recogniz-
ing invertible matrices (eg the summary on page 142), finding coordinates of a vector in a
given basis, finding change of coordinate matrices, finding the matrix of a linear transforma-
tion in a given basis, converting the matrices of a linear transformation from a representation
in one basis to another.
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