Math 295. Summary of Basic Definitions not in the Text.

If \(A \) and \(B \) are sets, a function \(f : A \to B \) with domain (or source) \(A \) and range (or target) \(B \) is a subset \(f \subseteq A \times B \) such that for all \(a \in A \), there is a unique \(b \in B \) (denoted \(f(a) \)) with \((a, b)\) in the subset \(f \subseteq A \times B \). If \(A = B = \mathbb{R} \), this is just a description of a "graph" which meets every vertical line exactly once. We denote the effect of the function \(f \) by the notation \(a \mapsto f(a) \) for a specific \(a \in A \).

We say that \(f : A \to B \) is injective (or one-to-one) if \(a \neq a' \Rightarrow f(a) \neq f(a') \) (or equivalently, whenever \(f(a) = f(a') \) then necessarily \(a = a' \)). If \(A = B = \mathbb{R} \), this says that the graph of \(f \) meets every horizontal line at most once. We say that \(f \) is surjective (or onto) if every \(b \in B \) can be expressed in the form \(b = f(a) \) for some (perhaps many) \(a \in A \). If \(f \) is both surjective and injective, we say \(f \) is bijective. Explicitly, \(f \) is bijective iff for all \(b \in B \) the equation \(f(x) = b \) has a unique solution in \(A \).

If \(S \) is a set, a binary operation is a function \(\oplus : S \times S \to S \), described by the notation \((s, s') \mapsto s \oplus s' \). We say that \(\oplus \) is associative if \(s \oplus (s' \oplus s'') = (s \oplus s') \oplus s'' \) for all \(s, s', s'' \in S \). We say that \(\oplus \) is commutative if \(s \oplus s' = s' \oplus s \) for all \(s, s' \in S \). Using the method of induction, one can then establish similar identities for forming \(\oplus \)'s of any finite set of elements in \(S \).

We say that \(e \in S \) is an identity element for \(\oplus \) if \(s \oplus e = e \oplus s \) for all \(s \in S \). Such an element is uniquely determined by this condition if it exists. If \(\oplus \) is associative and has a (necessarily unique) identity element \(e \), then for a fixed element \(s \in S \) we say that \(s' \in S \) is an \(\oplus \)-inverse of \(s \) if \(s \oplus s' = s' \oplus s = e \). Thanks to associativity, such an element \(s' \) is uniquely determined by this condition if it exists.

A set \(F \) equipped with associative binary operations \(+, \cdot\) is called a field if

- there exists an identity element (denoted \(0 \)) for \(+\) and \(+\)-inverses for all elements,
- there exists an identity element (denoted \(1 \)) for \(\cdot \) and \(-\)-inverses for all \(x \in F, x \neq 0 \),
- \(a \cdot (b + c) = a \cdot b + a \cdot c \) for all \(a, b, c \in F \)
- \(1 \neq 0 \)

An order structure on a field \(F \) is a subset \(P \subseteq F \) such that \(P \) is stable under \(+, \cdot \) and the trichotomy property is satisfied (for all \(x \in F \) exactly one of the following holds: \(x = 0 \), \(x \in P \), or \(-x \in P \)). We then say (for \(a, b \in F \)) that \(a > b \) when \(a - b \in P \). We define \(|a| \) for \(a \in F \) as follows:
- \(|a| = a \) when \(a \in P \),
- \(|a| = -a \) when \(-a \in P \), and
- \(|a| = 0 \) when \(a = 0 \). When an order structure is specified, we call the data \((F, P)\) an ordered field (and usually abbreviate this by suppressing explicit mention of \(P \)). For an ordered field \(F \), the positive elements are stable under formation of multiplicative inverses and the triangle inequality holds: \(|x + y| \leq |x| + |y| \) for all \(x, y \in F \).

A subset \(S \subseteq F \) is bounded above if there exists \(b \in F \) such that \(s \leq b \) for all \(s \in S \) (and then we call such \(b \) an upper bound for \(S \)). The notions of bounded below and lower bound are defined similarly with reverse inequalities. A supremum for a subset \(S \subseteq F \) is a least upper bound for \(S \) (if it exists); it is denoted \(\sup(S) \). An infimum for a subset \(S \subseteq F \) is a greatest lower bound for \(S \) (if it exists); it is denoted \(\inf(S) \). We say that \(F \) is complete if every non-empty bounded-above subset of \(F \) has a supremum (in \(F \), of course). In this case, every non-empty bounded-below subset has an infimum.

A subset \(N \) of an ordered field \(F \) is said to be inductive if \(1 \in N \) and if \(n + 1 \in N \) whenever \(n \in N \). There is a unique inductive set \(\mathbb{N}_F \subseteq F \) which is contained inside of all other inductive sets in \(F \). It is stable under addition and multiplication, \(n \geq 1 \) for all \(n \in \mathbb{N}_F \), and whenever \(m, n \in \mathbb{N}_F \) then \(m < n \) if \(n = m + r \) for some \(r \in \mathbb{N}_F \) (in particular, \(m < n \) if \(m + 1 \leq n \)). Moreover, \(\mathbb{N}_F \) satisfies the weak induction property: if \(S \subseteq \mathbb{N}_F \) is an inductive subset then \(S = \mathbb{N}_F \).
The subset $N_F \subseteq F$ satisfies two additional properties: the strong induction property (if $S \subseteq N_F$ and $n \in S$ whenever \{ $k \in N_F \mid k < n$ \} \subseteq S, then $S = N_F$) and the well-ordering principle (every non-empty subset of N_F contains a minimal element).

We define \mathbb{R} to be a complete ordered field (and will later prove it to be “unique” in a very precise sense). When $F = \mathbb{R}$, we write \mathbb{N} rather than N_F. We define $\mathbb{Z} = \mathbb{N} \cup \{0\} \cup -\mathbb{N}$. This is stable under addition, multiplication, and additive inversion. Moreover, we define $\mathbb{Q} = \{x \in \mathbb{R} \mid x = m/n \text{ for some } m, n \in \mathbb{Z}, n \neq 0\}$. This is an ordered field inside of \mathbb{R}. The order structures on \mathbb{Q} and \mathbb{R} are unique.

The completeness of \mathbb{R} implies that \mathbb{N} is not bounded above. Using this, one shows that the ordered field \mathbb{R} satisfies the archimedean property (for every $\varepsilon > 0$ and every $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ such that $n \varepsilon > x$) and that a mild generalized well-ordering principle holds: any non-empty subset of \mathbb{Z} which is bounded below in \mathbb{R} contains a minimal element.

Taking $x = 1$ in the archimedean property, we see that for every $\varepsilon > 0$ there exists $n \in \mathbb{N}$ such that $0 < 1/n < \varepsilon$. For any $x, y \in \mathbb{R}$ with $x < y$ there exists $q \in \mathbb{Q}$ with $x < q < y$ and that for all $\beta \in \mathbb{R}$ there is a unique $m \in \mathbb{Z}$ such that $\beta - 1 < m \leq \beta$; this m is called the greatest integer less than or equal to β and is denoted $[\beta]$. We then call $\beta - [\beta] \in [0, 1)$ the fractional part of β.

We say that $x \in \mathbb{R}$ is non-negative when $x \geq 0$. The equation $x^2 = a$ has a solution in \mathbb{R} iff $a \geq 0$. For such a, this equation has a unique non-negative solution, denoted \sqrt{a}, and $\sqrt{a} > 0$ when $a > 0$.

If S is a set, a function $f : S \to \mathbb{R}$ is bounded above if there is some $b \in \mathbb{R}$ such that $f(x) \leq b$ for all $x \in S$. Likewise, f is bounded below if there is some $b \in \mathbb{R}$ such that $f(x) \geq b$ for all $x \in S$. When both conditions hold, we say f is bounded. If $S \subseteq \mathbb{R}$ then we say that f is increasing (resp. decreasing) if $f(x) < f(y)$ (resp. $f(x) > f(y)$) whenever $x < y$.

The division algorithm in \mathbb{Z} states that for every $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist unique $q, r \in \mathbb{Z}$ with $0 \leq r < |b|$ and $a = bq + r$. When $b = 1 + 1$ we say that a is even if $r = 0$ and a is odd if $r = 1$.

A natural number $n \in \mathbb{N}$ is said to be prime if $n > 1$ and whenever $n = ab$ with $a, b \in \mathbb{N}$ then $a = 1$ (or equivalently, $b = n$) or $b = 1$ (or equivalently, $a = n$). Every $n \in \mathbb{N}$ larger than 1 is a product of finitely many primes.