Math 512. Quiz 1 Friday September 9, 2011.

1. Let \(f \) and \(g \) be two linear transformations of a vector space. Prove that \(f \circ g \) is also a linear transformation.

2. Let \(\Box \) be a binary operation on a set \(S \). Prove that if \(\Box \) has an identity element, then it is unique. [Hint: if there are two identities, consider their product.]

3. Let \(A = \begin{pmatrix} a_1 & \ldots & a_n \end{pmatrix} \) and let \(B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \), where \(n \) is some integer \(\geq 2 \).

 a.) Compute the matrix products \(AB \) and \(BA \).

 b). There is a very simple formula for the determinant of \(BA \), and a simple justification for it using one of the main theoretical properties of the determinant. What is this formula and its proof?