CHOOSE ONE:

1. (2.2 # 16 a from Artin): Let G be a cyclic group of order 6. How many of its elements generate G?

OR

2. Prove that every subgroup of \mathbb{Z} is cyclic.

Answers.

1. Say x generates G. Then the elements of G are $\{x, x^2, x^3, x^4, x^5, x^6 = e\}$. We claim that only x and x^5 generate G. Indeed, x obviously does, and since $x^5 = x^{-1}$, x and x^5 necessarily generate the same subgroup. Using the fact that $x^6 = e$, we check that the subgroup generated by x^2 contains the three elements x^2, $(x^2)^2 = x^4$, e, so that x^2 is not a generator. Since the inverse of x^2 is x^4, neither does x^4 generate G. Likewise, x^3 generates a two element subgroup containing just x^3 and e. Thus the only two elements of G that generate it are x and x^5.

2. It suffices to show that if G is a subgroup of \mathbb{Z}, then G is generated by some $n \in \mathbb{Z}$. If G is the trivial subgroup, then it is generated by 0. Assume G is not (0). Then it contains some non-zero element x, and also its inverse $-x$, so that G must contain a positive integer. By the well-ordering principle, the non-empty subset $\mathbb{N} \cap G$ has a minimal element, call it n. We claim that n generates G. To see this, take any $x \in G$. By the division algorithm, we can write $x = qn + r$ for some unique integers $q, r \in \mathbb{Z}$ satisfying $0 \leq r < n$. Now, since G is closed under addition and inverses, and both n and x are in G, we have also that $x - qn = x - (n + \cdots + n)$ is in G. Thus r is in G. This contradicts the minimality of n, unless $r = 0$. We conclude that $x = qn$, which is to say, $G = n\mathbb{Z}$ is generated by n.