1. Show that if R is Noetherian, then for any ideal $J \subset R$, the ring R/J is also Noetherian.

2. **Hilbert’s Basis Theorem.** Let R be a Noetherian ring. Hilbert’s Basis Theorem says that $R[X]$ is also Noetherian.¹
 (1) Using Hilbert’s basis theorem, deduce that $\mathbb{F}[X_1, \ldots, X_n]$ is Noetherian, where \mathbb{F} is a field.
 (2) Prove that every affine algebraic set (as defined on Homework Set 2) in \mathbb{P}^n is the common zero set of finitely many polynomials.
 (3) Prove that every affine algebraic set in \mathbb{P}^n is the intersection of finitely many hypersurfaces, where a hypersurface, by definition, is the zero set $V(f)$ of a single polynomial f in n variables.

3. **The coordinate ring of an affine algebraic variety.** Let $V \subset \mathbb{C}^n$ be any affine algebraic set. The coordinate ring of V is the ring $\mathbb{C}[V]$ of all (complex valued) functions on V which are the restriction to V of some complex polynomial function on \mathbb{C}^n.
 (1) Show that $\mathbb{C}[V]$ really is a ring, with an appropriate interpretation of $+$ and \times.
 (2) Find a natural surjective ring homomorphism $\mathbb{C}[X_1, \ldots, X_n] \to \mathbb{C}[V]$, and prove that its kernel is the ideal I_V of all polynomials that vanish on V.
 (3) Prove that $\mathbb{C}[V]$ is Noetherian.

4. **Cyclic Modules.** An R-module is cyclic if it can be generated by one element.
 (1) Show that for any non-zero ideal I in any domain R, the module R/I is always cyclic but never free.
 (2) Find and prove a criterion, in terms of n and m, such that the \mathbb{Z}-module $\mathbb{Z}_n \oplus \mathbb{Z}_m$ is cyclic.
 (3) Show that every cyclic R-module is isomorphic to a module of the form R/I where I is an ideal of R.

5. **Modules over non-commutative rings.** Let R be a non-commutative ring.
 (1) Prove or disprove: if I is a left ideal in R, then R/I is a (possibly non-commutative) ring.
 (2) Prove or disprove: if I is a left ideal in R, then R/I is an R-module. [Caution!]
 (3) Our definition of R-module is better called a left R-module in the case where R is not necessarily commutative. Define right R-module. [Caution!]
 (4) Prove or disprove: if I is a right ideal in a non-commutative ring R, then R/I is an left R-module. Is R/I a right R-module?
 (5) Prove that the kernel of a homomorphism of left R-modules is a left R-module. Is analogous true for right modules and right ideals?
 (6) Prove a first isomorphism theorem for left R-modules. Is there a first isomorphism theorem for right R-modules?

¹This may eventually be assigned for you to prove. I took it off the assignment for this week in order to keep the assignment a reasonable length.

(1) Consider the set \(\text{End}_\mathbb{R}(\mathbb{R}[x]) \) of all \(\mathbb{R} \)-vector space homomorphisms \(\mathbb{R}[x] \rightarrow \mathbb{R}[x] \). Show that it has a natural non-commutative ring structure.

(2) Show that the map \(\mathbb{R}[x] \rightarrow \text{End}_\mathbb{R}(\mathbb{R}[x]) \) sending \(f \) to the map “multiplication by \(f \)” is an injective homomorphism of (nnc) rings. Note that this lets us view \(\mathbb{R}[x] \) as a subring of \(\text{End}_\mathbb{R}(\mathbb{R}[x]) \).

(3) Let \(D = \mathbb{R}\langle x, \frac{\partial}{\partial x} \rangle \) be the subring of \(\text{End}_\mathbb{R}(\mathbb{R}[x]) \) generated by \(\mathbb{R}[x] \) and \(\frac{\partial}{\partial x} \). Show that we have the relation \(\frac{\partial}{\partial x} \circ x - x \circ \frac{\partial}{\partial x} = 1 \) in \(D \). This ring \(D \) is called the Weyl algebra.

(4) Explain why the Weyl algebra really is an algebra (over the field \(\mathbb{R} \)).

(5) Explain how we can view \(\mathbb{R}[x] \) in a natural way as a (left) \(D \)-module. Show that it is cyclic, but is not free.

(6) Find a natural surjective homomorphism \(D \rightarrow \mathbb{R}[x] \) of left \(D \)-modules and compute its kernel. What kind of mathematical object is this kernel? What does the first isomorphism theorem say in this case?

Artin: Chapter 12, §1: 6, 8, 9; §2: 1, 4, 5, 7; §4: 3