1. Cokernels of diagonal matrices. Let R be any ring, and let A be an $m \times n$ matrix which is diagonal with the (non-zero) elements d_1, d_2, \ldots, d_t on the diagonal and zeros elsewhere. Consider the map given by (left) multiplication (of column vectors) by A:

$$\phi_A : R^n \to R^m.$$

Prove that the cokernel of ϕ_A is isomorphic to $R/(d_1) \oplus \cdots \oplus R/(d_t) \oplus R^{m-t}$. Stated differently: prove that the matrix A presents the module $R/(d_1) \oplus \cdots \oplus R/(d_t) \oplus R^{m-t}$. [Hint: don’t forget or reinvent the isomorphism theorems!]

2. Comparing the Zariski topology and the Euclidean topology on \mathbb{C}^n.

1. Show that every affine algebraic set of \mathbb{C}^n is closed in the Euclidean topology of \mathbb{C}^n. [Hint: Use the fact that a polynomial over \mathbb{C} is continuous in the Euclidean topology.]

2. Given two topologies (call them T and T') on a set X, we say that T is **coarser** than T' if every T'-open set is open in the topology T. Show that the Zariski topology is coarser than the Euclidean topology.

3. A topological space X is Hausdorff if any pair of distinct points, x_1 and x_2, there exist disjoint open sets U_1 and U_2 such that $x_i \in U_i$. Is the Zariski topology on \mathbb{C}^n Hausdorff? Is the Euclidean topology Hausdorff?

3. Affine Schemes. Let R be a ring, and let $\text{Spec } R$ be the collection of all prime ideals of R. For each ideal $I \subset R$, let $\mathcal{V}(I)$ be the subset of $\text{Spec } R$ consisting of all prime ideals containing the ideal I.

1. Prove that if P is a prime ideal in a ring R, and $IJ \subset P$ for some ideals I and J of R, then $I \subset P$ or $J \subset P$. Interpret this as a familiar (to high school students) statement when $R = \mathbb{Z}$.

2. Prove that $\text{Spec } R$ can be given the structure of a topological space whose closed sets are the subsets of the form $\mathcal{V}(I)$. This is the Zariski topology on $\text{Spec } R$. Such a topological space is called an **affine scheme**.

3. Explicitly describe the Zariski topology on $\text{Spec } \mathbb{Z}$ and on $\text{Spec } \mathbb{C}[X]$.

4. Show that $\text{Spec } \mathbb{Z}$ and on $\text{Spec } \mathbb{C}[X]$ contain a dense point, that is, a point whose closure is the whole space. Is the same true in \mathbb{R} with the standard Euclidean topology?

5. Is $\text{Spec } \mathbb{Z}$ Hausdorff?