Consider the polynomial $x^n - 1 \in \mathbb{Q}[x]$. Its splitting field K_n is called the n-th cyclotomic extension of \mathbb{Q}. [CAUTION: the degree of this field extension is NOT n.

(1) Show that $x^n - 1$ has exactly n-distinct roots, and that they form a cyclic subgroup μ_n of the multiplicative group \mathbb{C}^\times. Any generator for the group μ_n is called a primitive n-th root of unity.

(2) Show that $K_n = \mathbb{Q}(\zeta_n)$ where ζ_n is a primitive n-th root of unity.

(3) Which permutations of the elements of μ_n induce \mathbb{Q}-automorphisms of K_n?

(4) Prove that the Galois group of K_n over \mathbb{Q} is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^\times$.

(5) Show that if $n = p$ is prime, then the Galois group is cyclic of order $p - 1$.

(6) Show that K_8 has Galois group isomorphic to the Klein 4-group. So not all cyclotomic extensions have cyclic Galois groups.

(7) Compute the Galois group, the lattice of all subgroups, and the corresponding lattice of all fixed fields of subgroups for the following examples: K_4/\mathbb{Q}, K_5/\mathbb{Q}, K_6/\mathbb{Q}, and K_8/\mathbb{Q}.

(8) Notice that if $d|n$, then $K_d \subset K_n$. What is happening in the case where $d = 3$ and $n = 6$?

The cardinality of the group $(\mathbb{Z}/n\mathbb{Z})^\times$, interpreted as a function of n, is called the “Euler φ function” and denoted $\varphi(n)$. That is, $\varphi(n)$ is the number of positive integers less than n and relatively prime to n.

(1) Show that $\mu_d \subset \mu_n$ if and only if $d|n$.

(2) Define the nth cyclotomic polynomial Φ_n to be the polynomial whose roots are the primitive n-th roots of unity. Show

$$\Phi_n(x) = \Pi_{\zeta \text{ primitive in } \mu_n} (x - \zeta) = \Pi_a \text{ s.t. } 1 \leq a < n; (a,n) = 1 (x - \zeta_n^a).$$

(This generalizes the cyclotomic polynomial you have studied before).

(3) Show that $x^n - 1 = \Pi_{d|n} \Phi_d(x)$, where the product is taken over all divisors of n.

(4) Work out (2) and (3) explicitly for small n. (Say $n \leq 8$). There are some cool recursive relationships you might discover. Is $\Phi_n \in \mathbb{Q}[x]$ for all n?

(5) Show that $n = \sum_{d|n} \varphi(d)$, where the sum is over all positive divisors of n.

(6) Show that the minimal polynomial of ζ_n over \mathbb{Q} is Φ_n.