Math 594, HW2 - Solutions

Gilad Pagi, Feng Zhu

February 8, 2015

1

a). It suffices to check that NA is closed under the group operation, and contains identities and inverses:

- NA is closed under the group operation since N is normal: $nan'a' = n(an'a^{-1})a = nn'aa' \in NA$.
- $e \in A \cap N$ since both are subgroups, so $e = ee \in NA$.
- Given $na \in NA$, $(a^{-1}n^{-1})a^{-1} \in NA$ since N is normal, and $na(a^{-1}n^{-1})a^{-1} = e$.

b). Define a map $N \rtimes A \to NA$ by $(n, a) \mapsto na$. This is a group map, since $(n, a)(m, b) = (n \gamma_a(m), ab) \mapsto namb$.

Moreover this map is surjective by construction.

The map is an isomorphism iff it is injective, iff $na \neq e$ for $(n, a) \neq (e, e)$, which happens iff $N \cap A = \{e\}$ (otherwise we can find $N \ni n \neq e$ with $n^{-1} \in A$, and then $(n, n^{-1}) \mapsto e$.)

c). $N \cong N \times_\phi A$ as $n \mapsto (n, e)$; $A \cong N \times_\phi A$ as $a \mapsto (e, a)$; (the isomorphic image of) N is normal in $N \times_\phi A$ since

$$(m, b)(n, e)(m, b)^{-1} = (m, b)(n, e)(b^{-1} \cdot m^{-1}, b^{-1}) = (mb \cdot n, b)(b^{-1} \cdot m^{-1}, b^{-1})$$
$$= (mb \cdot nm^{-1}, e) \in N$$

and $N \cap A = \{e\}$ by construction.

d). Taking the last computation from the previous part and setting $m = e$ (so that $(m, b) = (e, b) \in A$, we obtain

$$(e, b)(n, e)(e, b)^{-1} = (b \cdot n, e)$$

i.e. conjugation of N by an element $a \in A$ is equivalent to the action of a on N, as desired.

And the indirect help of Umang Varma, Lara Du
e). The key here is to prove that $G = MN$: N, M normal in G so $MN = NM \lhd G$. Since $MN \supset M, N$ it must be then $G = MN$ or $MN = M$ or $MN = N$ otherwise, using the forth iso theorem, the image of MN under the quotient $G \to G/M$ will give a non trivial subgroup. Same for N, But $N \neq M$ so it must be $G = NM$. Now the rest follows:

- Observe the canonical map $MN = G \to G/M \times G/N$. The kernel is $M \cap N$ so $G/(M \cap N) \cong G/M \times G/N$.
- $G/M = NM/M \cong N/(N \cap M)$ by using the second iso theorem. And symmetrically for M.

2

a). Let ψ be the group map $K \to \text{Aut}(H)$ described, and let r and x denote generators of H and K resp.; then, applying the result of 1(d) to write the action of K on H as conjugation by elements of K, $H \rtimes \psi K = \langle r, x \mid xr^{-1}x^{-1} = r^{-1} \rangle \cong D_n$, where the isomorphism is given by sending r to a rotation through $\frac{2\pi}{n}$, and x to any reflection.

b). Let E be the transformation inverting one coordinate (i.e. after fixing a basis, represented by a diagonal matrix with 1 on the diagonal in $n - 1$ places and -1 at one place. Notice: $\text{Det}(E) = -1, E \notin SO_n(\mathbb{R}), E^2 = I$. Define an action $\{I, E\} \to \text{Aut}SO_n(\mathbb{R})$ by $E(A) = EAE^{-1} = EAE$. Since SO_n is of index 2, it is normal, then we get the semi-direct product group and it must be $G \cong SO_n(\mathbb{R}) \times \langle E \rangle$ and in fact $G = SO_n(\mathbb{R}) \langle E \rangle$. Specifically, define $SO_n(\mathbb{R}) \times \langle E \rangle \to O_n(\mathbb{R})$ by $(A, B) \mapsto AB$, and observe that in fact this is an isomorphism. This is not a direct product because $\langle E \rangle$ is not normal in $O_n(\mathbb{R})$: EA is the A matrix with the first row multiplied by -1, whereas AE is the A matrix where the first column is multiplied by -1.

c). Both $O_2, \mathbb{R}^2 \leq E$, intersection is trivial so it is a semi-product if one of the subgroups is normal. If T is translation by t, and $A \in O_2$ then ATA^{-1} is a translation by At as seen in the computation below, thus $\mathbb{R}^2 \triangleleft E$ and we are done. The action $O_2 \to \text{Aut}(\mathbb{R}^2)$ must be conjugation in E, where the actual automorphism is quite natural: let t be translation so $x \mapsto x + At$ is the same as $x \mapsto A^{-1}x \mapsto A^{-1}x + t \mapsto A(A^{-1}x + t) = x + At$

3

a). Given a split, we denote A' as the image of A in G and denote B' as the image of B in G under ϕ. WTS $G = A'B', A' \vartriangleleft G, A' \cap B' = e$. First, consider $g \in G, g \notin A'$. chasing the diagram $g \mapsto b \neq e \in B \mapsto g' \in B' \mapsto b \in B$. So under π, the images of g, g' are the same, and the $ker = A'$ so $g \in g'^{-1}A' \subset B'A'$. Indeed $A' \triangleleft G$. Finally, chasing a member of the kernel with preimage in B must be e.

Alternatively, consider $G = N \rtimes H$. So the following is exact: $1 \to N \to G \xrightarrow{\pi} H \to 1$ using the projections, and N normal. Consider $\phi : a \mapsto (e, a)$ so $\pi \phi = id_H$.

2
b). All the subgroups of Q are normal so every semi-product would be direct product, but Q is not abelian. $1 \rightarrow (-1) \rightarrow Q \xrightarrow{x \mapsto x^2} Klein \rightarrow 1$.

4

a). Let $H(k)$ denote the Heisenberg subgroup. Note $H(k) \subset GL_3(k)$ as a subset.

Now the identity is in $H(k)$, since we may take $a = b = c = 0$, and that $H(k)$ is closed under composition and under taking inverses: the composition of two elements is given by

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a' & b' \\ 0 & 1 & c' \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a + a' & b + b' + ac' \\ 0 & 1 & c + c' \\ 0 & 0 & 1 \end{pmatrix}$$

and inverses may be obtained by taking $a' = -a$, $c' = -c$ and $b' = ac - b$ in the above. Hence $H(k)$ is a subgroup of $GL_3(k)$, as claimed.

b). We certainly have $H \subset H(k)$ as a subset, and H contains the identity; moreover, from the above computation, H is closed under composition ($a = a' = 0 \implies a + a' = 0$) and inverses ($a = 0 \implies -a = 0$), so it is a subgroup of $H(k)$.

We may verify that it is isomorphic to k^2 by the isomorphism

$$\begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mapsto b, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mapsto c.$$

H is a normal subgroup of $H(k)$, since it is the kernel of the group map $H(k) \rightarrow k$ given by $\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mapsto a$.

c). $\{id\} \subset K \subset H(k)$ in the category of sets; from the above computation, K is closed under composition ($b = b' = c = c' = 0 \implies b + b' + ac' = c + c' = 0$) and inverses ($b = c' = 0 \implies -c = ac - b = 0$), so it is a subgroup of $H(k)$.

We may verify that it is isomorphic to k by the isomorphism $\begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mapsto a$.

K is a not a normal subgroup of $H(k)$:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a & -a \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \notin K$$

for $a \neq 0$.

3
d). Denote G as the Heisenberg group. Notice that together they generate G:

\[
\begin{pmatrix}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & b - ac \\
0 & 1 & c \\
0 & 0 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{pmatrix}
\]

So $G = HK, H \triangleleft G, H \cap K = I$ so we have direct product. The action must be by conjugation $a \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + ya \\ y \end{pmatrix}$.

e). $\mathbb{F}_2 \cong C_2, \mathbb{F}_2^2 = \text{Group of order 4}$, So G is of order 8. G is not abelian so either D_4 or Q.

Since \mathbb{F}_2^2 already contains 3 elements of order 2, this can’t be Q.

f). $\mathbb{H}(\mathbb{F}_p)$

5

a). $|D_q| = 2q$ and we have a 2-Sylow of the reflection $\langle t \rangle$, and the rotation $\langle r \rangle$ is a q-sylow.

b). We may characterize $\text{GL}_n(\mathbb{F}_p)$ as the group of $n \times n$ matrices of full rank over \mathbb{F}_p. We may count these as follows: there are $p^n - 1$ choices for the first column (it can be any nonzero column), $p^n - p$ choices for the second column (it can be anything which is not a multiple of the first column), $p^n - p^2$ choices for the third column (anything not in the span of the first two columns), etc., up to $p^n - p^{n-1}$ choices for the last column; hence

$$|\text{GL}_n(\mathbb{F}_p)| = (p^n - 1)(p^n - p) \cdots (p^n - p^{n-1})$$

and in particular $p^{1+\cdots+(n-1)} = p^{\binom{n}{2}}$ divides $|\text{GL}_n(\mathbb{F}_p)|$ and so we will be done if we can show that the subgroup of upper triangular matrices with ones on the diagonal has cardinality $p^{\binom{n}{2}}$; but this is clear since there are p choices for each of the $1 + \cdots + (n - 1) = \binom{n}{2}$ matrix entries above the diagonal (note that all upper triangular matrices with ones on the diagonal have determinant one and are already invertible, and we have no further restrictions.)

6

a). By Lagrange’s theorem, $p^t n \mid |G|$; in particular $p^t \mid |P|$. Let $|P| = p^{t+k}$ where $k \geq 0$.

Observe $|G| = |P| \cdot \sum_{Y \text{ orbit }} |Y|$, where we sum over the orbits when H acts on G/P.

If every orbit has cardinality divisible by p, then $|G|$ is divisible by $|P| \cdot p = p^{t+k+1}$, which contradicts that P is a p-Sylow group of G.

Hence there is some orbit X when H acts on G/P of cardinality not divisible by p.

b). Let $x \in X$. By the stabilizer-orbit theorem, $|\text{Stab}_H(x)| \cdot |X| = |H|$. Since p^t divides $|H|$ but not $|X|$, we must have $p^t \mid |\text{Stab}_H(x)|$ (since the integers form a UFD.)

c). Let $x \in X$. If $h \in \text{Stab}_H(x)$, then $hx = x$; but now recall that x is a coset of G/P (if P is not normal, replace “coset” with “left coset”), so we may also say, for any y in this coset, $yh^{-1} \in P$. Since this holds for all $h \in \text{Stab}_H(x)$, we may deduce that $yHy^{-1} \subset P$, i.e. H is conjugate (in G) to a subgroup of P.

Any subgroup of P has order a power of p (by Lagrange’s theorem) and so $\text{Stab}_H(x)$ has order a power of p.

d). Let G be a finite group with a p-Sylow subgroup P, and let H be a subgroup of G of order p^tn as above; suppose further that $p \nmid n$.

From the above, we have a subgroup $S \leq H$ (a stabilizer of a certain orbit X of the action of H on G/P) whose order divisible by p^t [from (b)] and whose order is a power of p [from (c)]. Since $|S|$ divides $|H| = p^tn$ from Lagrange’s theorem, we may conclude that $|S| = p^t$, i.e. S is a p-Sylow subgroup of $H \leq G$.

Since H may be any subgroup of G in the above, we are done.

e). Any group G of order n acts on the vector space \mathbb{F}_p^n as follows: choose a basis \mathcal{B} of \mathbb{F}_p^n and label them with the elements of the group, i.e. choose a bijection between \mathcal{B} and $|G|$; then let G act on the elements of \mathcal{B} by left-multiplication (of the corresponding labels) and extend this action linearly to all of \mathbb{F}_p^n.

This produces a group map $G \to \text{GL}_n(\mathbb{F}_p)$. This map is injective—i.e. an embedding, as desired—since the left-multiplication action described above is faithful (indeed, free, i.e. the action of any non-identity element has no fixed points.)

f). (appears as second (e) on Homework)

From the previous part (e), every finite group G embeds in $\text{GL}_n(\mathbb{F}_p)$ for $n = |G|$ and for every p. From #4(b), $\text{GL}_n(\mathbb{F}_p)$ has a p-Sylow subgroup. From part (d), G also has a p-Sylow subgroup.

g). (appears as (f) on Homework)

Fix G be a finite group and let P_1 and P_2 be two p-Sylow subgroups of G.

If we run the above argument [(a) through (d)] with $P = P_1$ and $H = P_2$, then we see, by considerations of cardinality, that the stabilizer in question must be all of $H = P_2$, which is in turn conjugate to a subgroup of P_1; again, by considerations of cardinality, we may then conclude that P_2 is conjugate to P_1.

7

a). We may represent S_n by the set of $n \times n$ permutation matrices over k: if we let (e_1, \ldots, e_n) denote a basis of k^n, S_n acts naturally on $\{e_1, \ldots, e_n\}$ as a set of n objects (by permuta-
tions), and this extends uniquely (linearly) to an action of S_n on k^n, i.e. a group map $S_n \to \text{GL}_n(k)$.

We may verify that this group action is faithful, i.e. the group map $S_n \to \text{GL}_n(k)$ is injective, and hence S_n may be viewed as a subgroup of $\text{GL}_n(k)$ (by taking its isomorphic image in $\text{GL}_n(k)$ under this map.)

If we fix (e_1, \ldots, e_n) to be the standard basis for k^n, the transposition (ij) corresponds to the elementary matrix obtained from the identity matrix by switch columns (or rows) i and j. Notice that each transposition has a determinant of -1. So define $\text{Det} : S_n \to \{\pm 1\}$ and observe that this is a group map, and A_n is its kernel. Thus, $A_n \leq S_n$.

b). We remark that alternating n-linear maps are skew n-linear.

By skew-multilinearity and by the characterisation in (a) of the matrices representing transpositions, we note that $\text{det}(\tau_{ij}) = -1$ for any transposition $\tau_{ij} := (ij)$.

Since $\text{det} : S_n \subset \text{GL}_n(k) \to k^*$ is a group map, the determinant of a product σ of n transpositions is given by the product of their determinants, i.e. $\text{det}(\sigma) = (-1)^n$. In particular, $\text{det}(\sigma) = 1$ if σ can be written as a product of an even number n of transpositions, and $\text{det}(\sigma) = -1$ if σ can be written as a product of an odd number of transpositions.

If there is more than one way to write σ as a product of transpositions, then we must conclude that the numbers of transpositions in each of these products has the same parity, since the above argument must hold and det is a well-defined function.

c). A_n is normal. Take $B = \langle (12) \rangle$. Their intersection is trivial. All we need to show is $S_n = A_n B$. Enough to show that we can create any cycle (ab). For $a \neq 1, 2, b \neq 1, 2$ Use $(ab)(12) \cdot (12)$. For (12) - done. For $(1a)$ or $(2a)$ use $(12)(2a) \cdot (12)$ or $(12)(1a) \cdot (12)$ respectively.