1. A family of elliptic curves. For $\lambda \in k$, let C_λ denote the plane projective cubic curve defined by $x^3 + y^3 + z^3 + \lambda(x + y + z)^3$. Construct a family of varieties parametrized by the affine line whose members are exactly the C_λ. Explicitly describe the locus of points in your parameter space A^1 parametrizing those C_λ that are smooth.

2. Maps on Tangent Spaces. Say that V and W are closed subvarieties of A^n and A^m respectively, and let $F : V \rightarrow W$ be a regular map. Prove that the induced linear map on tangent spaces $d_pF : T_pV \rightarrow T_{F(p)}W$ at a point $p \in V$ is induced by (describe how, and in what basis!) by the Jacobian matrix (at p) of the coordinate functions describing F.

3. Birational equivalence of varieties. Define two varieties to be birationally equivalent if they are isomorphic on dense open subsets. That is, W and V are birationally equivalent if there exist dominant regular maps $\phi : U \rightarrow W$ and $\psi : U' \rightarrow V$, where U is a dense open subset of V and U' is a dense open subset of W, and some dense open subset of W (respectively V) where the composition $\phi \circ \psi$ (respectively $\psi \circ \phi$) is the identity map on W (respectively V).

 a). Prove that V and W are birationally equivalent if and only if their function fields $k(V)$ and $k(W)$ are isomorphic as field extensions of k.

 b). Show that birationally equivalent varieties have the same dimension.

 c). Show that every variety is birationally equivalent to a hypersurface. [This may involve quoting some facts from commutative algebra, and is much easier if you’ve done all the assigned reading from Shafarevich.]

4. Singular set of Projective Varieties. Let $V \subset P^n$ be a projective variety and let $\tilde{V} \subset k^{n+1}$ be the affine cone over it.

 a). Prove that V is smooth if and only if \tilde{V} has (at worst) an isolated singular point at the origin.

 b). Prove that \tilde{V} is always singular at the origin unless V is a linear variety in P^n.

 c). If the homogeneous ideal of V is generated by homogeneous polynomials F_1, F_2, \ldots, F_m and V has pure codimension c, show that $\text{Sing } V = V \cap \forall(c \times c \text{ minors } \frac{\partial F_i}{\partial x_j})$.

5. Universal Hypersurface. Consider the variety X defined by the bihomogeneous polynomial $\sum a_I x^I$ in $P(Sym^d(V^*)) \times P(V)$, where x^I denotes $x_0^{i_1} \ldots x_n^{i_n}$ for x_0, \ldots, x_d coordinates for $P(V)$ and a_I the corresponding coordinates on $P(Sym^d(V^*))$.

1 in the technical sense of a surjective morphism of varieties
a). Explain how this allows us to think of the set of hypersurfaces in $\mathbb{P}(V)$ as a family in the technical sense of the word, parametrized by $\mathbb{P}(Sym^d(V^*))$.

b). Prove that \mathcal{X} is an irreducible projective variety by considering one of the two obvious projections.

c). Consider the subset $\Sigma \subset \mathcal{X}$ consisting of pairs $(H,p) \in \mathbb{P}(Sym^d(V^*)) \times \mathbb{P}(V)$ where p is a singular point on the hypersurface in $\mathbb{P}(V)$ corresponding to H. Prove that Σ is a proper closed subset of \mathcal{X} by giving some explicit defining equations.

d). What is the geometric significance of the image of Σ under the projection to $\mathbb{P}(Sym^d(V^*))$? Can the image of Σ be all of $\mathbb{P}(Sym^d(V^*))$?

6. Bertini’s Theorem. a). Let $V = \mathbb{V}(F)$ be a smooth irreducible hypersurface in \mathbb{P}^n, not contained in any hyperplane \mathbb{P}^{n-1}. Prove that a hyperplane section $V \cap H$ is smooth at p if and only if the hyperplane H is not tangent to V at p.

b). Prove that the set of smooth hyperplane sections of V is parametrized by a non-empty Zariski open subset of the variety of hyperplanes in \mathbb{P}^n. (This is called Bertini’s theorem, and is true even if V is not a hypersurface.)

7. Gauss Map. Let X be a smooth irreducible projective variety of dimension d in $\mathbb{P}(V) = \mathbb{P}^n$. Define a map $\rho : X \rightarrow G_{d+1}(V)$ sending the point p to the projective tangent space to X at p.

a). Explain why there is a natural identification of $G_{d+1}(V)$ with $G_{n-d}(V^*)$.

b). Prove that ρ is a morphism of varieties. What is going on when two points have the same image under ρ?

c). Let $X = \mathbb{V}(x^d + y^d + z^d)$ in \mathbb{P}^2. Compute ρ explicitly. What is the dimension of the image? Compute the image explicitly in the cases where $d = 1, 2, \text{ and } 3$.

8. The Tangent Cone. a). Read page 95 of Shafarevich (section II 1.5). Accept the fact that the tangent cone of any variety at p has the same dimension as V at p. Show that if p is a smooth point of V, then the tangent cone to V at p agrees with the tangent space to V at p.

b). Prove that if V is a plane curve, then the tangent cone to V is a union of lines, and find the tangent cones at the origin for each of the plane curves below. Sketch each curve and its tangent cone.

$$y^2 - x^2 - x^3 = 0, \quad xy - y^4 = 0.$$

c). How do you expect the (complex points of the) curve defined by the equation $x^3 y - y^3 x - xy^{17} + xy^{203}$ to look in a tiny ϵ-neighborhood of the origin (using the Euclidean topology)? What about $x^2 y + xy^2 - x^4 - y^4 = 0$?

d). Fix a finite set of scalars $\{m_1, \ldots, m_k\}$. Show that there exists an irreducible plane curve C passing through a point p which has k branches passing through p with slopes m_1, \ldots, m_k, respectively.

e). Find the tangent cone to the curve $\mathbb{V}(x^3 - y^2)$ at the origin. Why would it be better to think of this as a “scheme”? What scheme should it be?

2The image is called the dual curve.

3Prove it for extra credit.