Math 631: Problem Set 5

Due Friday October 11, 2013

1. **Closed sets of** \(\mathbb{P}^n \times \mathbb{P}^m \). Recall that the closed sets in \(\mathbb{P}^n \times \mathbb{P}^m \) are given by bihomogeneous polynomials (see Shaf 5.1).

 a). Let \(X \) be a hyperplane section of the Segre variety \(\Sigma_{nm} \) in \(\mathbb{P}^{(m+1)(n+1)−1} \), that is, the intersection of a hyperplane in \(\mathbb{P}^{(m+1)(n+1)−1} \) with the image of \(\mathbb{P}^n \times \mathbb{P}^m \) under the Segre map \(\sigma_{nm} \). Explicitly describe the bihomogeneous polynomials that define the corresponding closed subset of \(\mathbb{P}^n \times \mathbb{P}^m \).

 b). Let \(X = \mathbb{V}(x_0^2x_1^2y_1y_0 + x_1^5y_1^2 + x_0^5y_1^2 + x_0x_1y_0^2) \) be a closed set in \(\mathbb{P}^1 \times \mathbb{P}^1 \) (where homogeneous coordinates are \(x_0 : x_1 \) on first copy and \(y_0 : y_1 \) on second copy of \(\mathbb{P}^1 \)). Find defining equations for the image of \(X \) under the (restriction of) the segre embedding \(\sigma_{1,1} \) in \(\mathbb{P}^3 \), with coordinates \(z_{00}, z_{01}, z_{10}, z_{11} \).

2. **Hyperplane through general points.** Fix any \(n \) points in \(\mathbb{P}^n \). Prove that there is a hyperplane containing these \(n \) points, and that if the \(n \) points are in “general position,” then there is a unique hyperplane containing them all. Explain the meaning of “general position” in the context of this problem. For example, when \(n \) is two, it is clear that two points determine a line; general position here means the points are distinct.\(^1\)

3. **Hypersurfaces through points.**

 a). Fix a point \(P \in \mathbb{P}(V) = \mathbb{P}^n \). Show that the set of hypersurfaces of degree \(d \) in \(\mathbb{P}(V) \) passing through \(P \) is naturally parametrized by a hyperplane in the variety \(\mathbb{P}(\text{Sym}^d(V^*)) \) parametrizing all degree \(d \) hypersurfaces in \(\mathbb{P}(V) \).

 b). Fix a natural number \(d \). Find \(q \) such that following sentence is true: “Through \(q \) general points in the projective plane, there passes a uniquely determined curve (ie, hypersurface in \(\mathbb{P}^2 \)) of degree \(d \).”

4. **Family of Degenerate Conics.** For this problem assume the field does not have characteristic 2.

 a). Show that the subset of degenerate conics in \(\mathbb{P}^2 = \mathbb{P}(V) \) (those that are a union of two lines or a “double line”) forms a proper projective subvariety of \(\mathbb{P}^5 = \mathbb{P}(\text{Sym}^2(V^*)) \) isomorphic to a certain projection of the Segre image of \(\mathbb{P}^2 \times \mathbb{P}^2 \) in \(\mathbb{P}^8 \) to \(\mathbb{P}^5 \). What is the dimension of the subvariety of degenerate conics?\(^2\)

 b). Show that the subset of “double lines” forms a proper closed subset of the space of all conics isomorphic to the Veronese surface in \(\mathbb{P}^5 \).

5. **Resultant.** Let \(F \) and \(G \) be two homogenous polynomials in \(k[U,V] \), of degrees \(m \) and \(n \) respectively. Let \(\text{Sym}^{n+m-1}(k^2)^* \) denote the vector space of homogeneous polynomials in \(k[U,V] \) of degree \(m+n-1 \).

 a). Show that \(F \) and \(G \) have a common factor if and only if the subvector spaces \(V_F \) and \(V_G \) of \(\text{Sym}^{n+m-1}(k^2)^* \) of polynomials divisible by \(F \) (respectively \(G \)) meet non-trivially.

 b). Show that \(F \) and \(G \) have a common factor if and only if the polynomials

 \[
 U^{n-1}F, U^{n-2}VF, \ldots, V^{n-1}F, U^{m-1}G, U^{m-2}VG, \ldots, V^{m-1}G
 \]

 are linearly dependent.

\(^1\)Caution: the meaning of the ubiquitous phrase “general position” in algebraic geometry varies depending on the context, even on this very problem set!

\(^2\)Hint: \(\mathbb{P}^2 \times \mathbb{P}^2 \) is really \(\mathbb{P}(V^*) \times \mathbb{P}(V^*) \).
c). Show that \(F \) and \(G \) have a common factor if and only if the determinant of a certain \((m+n) \times (m+n)\) matrix formed from the coefficients of \(F \) and \(G \) is zero. This matrix is called the \emph{resultant} of \(F \) and \(G \).

d). Assume \(k = \bar{k} \). Let \(\mathbb{P}(\text{Sym}^m(k^2)^*) \) and \(\mathbb{P}(\text{Sym}^n(k^2)^*) \) be the projective spaces of all projective sets of points of degree \(m \) and \(n \) respectively.\(^3\) Consider the subset \(\Gamma \subset \mathbb{P}(\text{Sym}^m(k^2)^*) \times \mathbb{P}(\text{Sym}^n(k^2)^*) \) of pairs of point sets that have a point in common. Prove the subset \(\Gamma \) is a non-empty Zariski closed set.

e). Can you think of a way to generalize this problem to polynomials in more than two variables?

6. **Blowing up.** Let \(X \subset \mathbb{A}^2 \times \mathbb{P}^1 \) be the set of pairs \((p, \ell), \) where \(p \in \mathbb{A}^2 \) and \(\ell \) is a line through the origin in \(\mathbb{A}^2 \) containing \(p \).

a). Prove that \(X \) is a closed set in \(\mathbb{A}^2 \times \mathbb{P}^1 \). Find explicit defining equations.

b). Consider the natural map \(\pi : X \to \mathbb{A}^2 \) given by projection onto the first coordinate. Show that this map is a surjective regular map. For each point \(p \) of \(\mathbb{A}^2 \), describe the preimage set \(\{ \pi^{-1}(p) \} \) (in particular, what are its defining equations? what well-known variety is it isomorphic to? its dimension?). Is \(\pi \) finite?

c). Consider the natural map \(\eta : X \to \mathbb{P}^1 \) given by projection onto the second factor. Show that it is a surjective regular map. Describe the preimage of each point \(p \in \mathbb{P}^1 \). Is this map finite? This map defines what is called the \emph{tautological line bundle} on \(\mathbb{P}^1 \). Without going into technicalities about the definition of line bundles, why is this name justified?

7. **Diagonal Maps.** Consider the diagonal mapping \(\Delta : \mathbb{P}^n \subset \mathbb{P}^n \times \mathbb{P}^n \) sending each \(x \) to the pair \((x, x)\).

a). Prove that \(\Delta \) defines an isomorphism between \(\mathbb{P}^n \) and some closed set of \(\mathbb{P}^n \times \mathbb{P}^n \), and find an explicit set of bihomogeneous generators for the ideal of the image.

b). For any quasi-projective \(V \), show that the diagonal \(\Delta_V = \{(x, x)|x \in V\} \) is closed in \(V \times V \). [By definition, an abstract variety \(X \) is \emph{separated} if the diagonal in \(X \times X \) is closed.\(^4\) Separated is a property much like the Hausdorff property for topological spaces; in fact, from Math 591 you know that a topological space \(Y \) is Hausdorff if and only if the diagonal is closed in \(Y \times Y \). Does this mean all quasi projective varieties are Hausdorff? Explain!]

c). Prove that the intersection of two affine open subsets of a quasi-projective variety is affine. [By definition, a variety \(V \) is affine if it is isomorphic to an irreducible closed set in \(\mathbb{A}^n \).]

7. **A typical finite map.** Let \(V \) be an irreducible hypersurface in \(\mathbb{P}^n \) of degree \(d \) over an algebraically closed field of characteristic zero.

a). Show that every line in \(\mathbb{P}^n \) intersects \(V \) in exactly \(d \) points (counting multiplicity), unless it lies on \(V \). Part of the point here is to make sense of “counting multiplicity” of the intersection.

b). Pick any \(p \notin V \). Show the the projection from \(p \) to any hyperplane gives a surjective regular map \(V \to \mathbb{P}^{n-1} \). Explain why we expect this map to be “typically \(d \)-to-1.”

c). Show that we can choose coordinates so that \(p = [0:0: \ldots :0:1] \), \(\mathbb{P}^{n-1} = V(x_n) \), and the equation for \(V \) has the form \(x_n^d + a_1x_{n-1}^d + \ldots + a_d \), where the \(a_i \) are homogeneous of degree \(i \) in the variables \(x_0, \ldots, x_{n-1} \). Explicitly describe how to find the preimage of a point \(q \in \mathbb{P}^{n-1} \) in terms of these choices.

d). Prove that \(\pi \) is finite, directly from the definition of finiteness (as defined in Shafarevich.)

e). The points whose pre-image fails to have precisely \(d \) distinct points are called \emph{ramification points}. Prove that the set of ramification points (the ramification locus) is a proper Zariski closed subset of \(\mathbb{P}^{n-1} \), in fact, a hypersurface in \(\mathbb{P}^{n-1} \). (Hint: Remember a criterion from field theory for when a polynomial in a single variable has a repeated root.)

\(^3\)A \emph{projective set of points of degree} \(n \) \emph{means} a \emph{hyper surface of degree} \(n \) in \(\mathbb{P}^1 \).

\(^4\)Many authors include separatedness as part of the definition of a variety; this rules out varieties like the “bug eyed line” where two copies of \(\mathbb{A}^1 \) are glued together to create a line with two origins.