Algebra 2: Harjoitukset 1.

A. Definition: A point \(p \) in the Cartesian plane is **rational** if \(p = (x_1, y_1) \) with \(x_1, y_1 \in \mathbb{Q} \). A line in the Cartesian plane is **rational** if it is determined by (passes through) two rational points.

1. Prove that a line in the Cartesian plane is rational if and only if it can be given by an equation \(ax + by = c \) where \(a, b, c \in \mathbb{Q} \).
2. Prove that the intersection of two rational lines in the Cartesian plane is a rational point (or empty).

B. Fix any real extension field \(K \) of \(\mathbb{Q} \). We say that a point \(p \) in the Cartesian plane is **\(K \)-rational** if its coordinates \((x_1, y_1) \) satisfy \(x_1, y_1 \in K \). A **\(K \)-rational line** is a line determined by two \(K \)-rational points. Prove that the intersection of any two \(K \)-rational lines is a \(K \)-rational point (or empty).

C. Definition: A circle in the Cartesian plane is **rational** if its center is a rational point and it passes through a rational point. Does the intersection of a rational circle with a rational line in the Cartesian plane always consist of rational points? Explain. What do you think a \(K \)-rational circle should be (where \(K \) is a real extension field of \(\mathbb{Q} \))? What can be said about the intersection of a \(K \)-rational circle with a \(K \)-rational line?

D. Let \(F \) be the set of words \(\{ \text{even}, \text{odd} \} \). Define binary operations + and \cdot on \(F \) in the obvious way: \(\text{even} + \text{odd} = \text{odd}, \text{even} \cdot \text{odd} = \text{even} \) etc. Construct an addition table and a multiplication table for these operations. Does this set form a field with these operations? What are the additive and multiplicative identities?

E. Using only the axioms of the field definition, prove that the additive and multiplicative identities of a field are unique. Prove also that the additive inverse and multiplicative inverse of each (non-zero) element is unique.

F. Compute the degrees of the following extensions. Exhibit an explicit vector space basis in each case.

1. \(\mathbb{R} \subset \mathbb{C} \).
2. \(\mathbb{Q} \subset \mathbb{Q}(\sqrt{17}) \).
3. \(\mathbb{Q} \subset \mathbb{Q}(\sqrt{17}, \sqrt{19}) \).
4. \(\mathbb{Q} \subset \mathbb{Q}(\sqrt{17}, \sqrt{19}, \theta) \), where \(\theta \) is a complex number such that \(\theta^2 \in \mathbb{Q}(\sqrt{17}, \sqrt{19}) \).
5. \(\mathbb{Q} \subset K \) where \(K \) is the extension of \(\mathbb{Q} \) obtained by adjoining all third roots of unity, that is, \(K = \mathbb{Q}(\{e^{\frac{2\pi i}{3}}, e^{\frac{4\pi i}{3}}, 1\}) \). [Hint: For a complex number \(z \) on the unit circle in \(\mathbb{C} \), \(\bar{z} = z^{-1} \).]

BONUS: Let \(K = \mathbb{Q}(S) \) where \(S \) is the set of all the complex fifth root of unity. Prove that \([K : \mathbb{Q}] = 4 \). You may assume that the polynomial \(x^4 + x^3 + x^2 + x + 1 \) is irreducible. [Hint: \(e^{\frac{2\pi i}{5}} \) satisfies \(x^5 - 1 \), which can be factored.]

1 Meaning that \(\mathbb{Q} \subset K \subset \mathbb{R} \).