Algebra 2: Harjoitukset 7.

A. Recall that if \(f(x) \in \mathbb{Q}[x] \) is any polynomial, with roots \(\beta_1, \ldots, \beta_n \in \mathbb{C} \), then the Galois group of \(f \) can be identified with a subgroup of \(S_n \). For each polynomial below, fix an ordering of the roots, and then write out the elements of the Galois group of \(f \) explicitly as permutations, using cycle notation.

\((1) \) For \(x^5 - 1 \in \mathbb{Q}[x] \), express the elements of \(G \) in cycle notation in \(S_5 \).
\((2) \) For \(x^4 - 5x^2 + 6 \in \mathbb{Q}[x] \), express the elements of \(G \) in cycle notation in \(S_4 \).
\((3) \) For \(x^5 - 7 \in \mathbb{Q}[x] \), express the elements of \(G \) in cycle notation in \(S_5 \).

B. **Definition:** A subgroup \(H \) of a group \(G \) is **normal** if for all \(g \in G \) and all \(h \in H \), we have \(g^{-1}hg \in H \).

(1) Show that in an abelian group, every subgroup is normal.
(2) Show that the kernel of a group homomorphism is a normal subgroup.
(3) Let \(G/H \) denote the set of cosets \(gH \) with respect to \(H \). Prove that if \(H \) is normal, then there is a well-defined binary operation on \(G/H \)
\[
g_1H \circ g_2H = (g_1g_2)H
\]
making \(G/H \) into a group. [Hint: The issue is that there is more than one way to write a coset: \(gH = g'H \) for any \(g \in g'H \). We need to make sure the product is independent of the choice of representative for the coset.]
(4) Show that if \(H \) is normal, then the natural map \(G \to G/H \) taking each \(g \) to the corresponding coset \(gH \) is a group homomorphism with kernel \(H \).
(5) True or False: Let \(H \) be a subgroup of \(G \). Then \(H \) is normal if and only if it is the kernel of some homomorphism \(G \to G' \).

C. List all subgroup of \(S_5 \). Which are normal? For each normal subgroup \(H \), compute \(S_5/H \).

D. **Definition:** A group \(G \) acts on a set \(X \) if there is a map \(G \times X \to X \) sending \((g, x) \mapsto g \cdot x \) such that

\((1) \) \(g \cdot (h \cdot x) = (gh) \cdot x \) for all \(g, h \in G \) and all \(x \in X \).
\((2) \) \(e \cdot x = x \) for all \(x \in X \).

i. Prove that the set \(G_x = \{ g \in G \mid g \cdot x = x \} \) is a subgroup of \(G \) (this is called the **stabilizer subgroup** of \(x \)).
ii. The orbit of \(x \in X \) is the set \(G \cdot x = \{ g \cdot x \mid g \in G \} \). Prove that \(G \cdot x = G \cdot y \) if and only if there exists \(h \in G \) such that \(hx = y \).
iii. Prove that for all \(x, y \in X \), \(G \cdot x = G \cdot y \) OR \(G \cdot x \cap G \cdot y = \emptyset \).
iv. Prove that if \(G \cdot x = G \cdot y \), then the stabilizers of \(x \) and \(y \) are conjugate— that is, there exists \(h \in G \) such that \(h^{-1}G_yh = G_x \).
v. Show that all elements in the orbit \(G \cdot x \) have the same stabilizer \(H \) if and only if the stabilizer \(H \) of \(x \) is a normal subgroup of \(G \).

E. Let \(G \) be the Galois group of a finite normal extension \(L/K \). Let \(\mathcal{F} \) be the set of all intermediate fields of \(L/K \).

\((1) \) Show that for \(F \in \mathcal{F} \) and \(\phi \in G \), \(\phi(F) \) is a field.
\((2) \) Find a natural (non-trivial) action of \(G \) on the set \(\mathcal{F} \) of intermediate fields of \(L/K \).
\((3) \) Fix \(F \in \mathcal{F} \). Let \(H \) be the stabilizer of \(F \) under the action of \(G \). Find a natural group homomorphism \(H \to \text{Gal}(F/K) \) whose kernel is \(\text{Gal}(L/F) \).

F. Let \(L \) be the splitting field of \(x^3 - 3 \) over \(\mathbb{Q} \), and let \(G \) be the Galois group. [See Lecture from Oct 17].

\((1) \) Describe each orbit of the action of \(G \) on \(\mathcal{F} \) (defined in E) explicitly (ie, list out the fields \(F \) in each orbit).
\((2) \) For each \(F \in \mathcal{F} \) compute the stabilizer of \(F \) explicitly, by listing the elements of \(G \) in the stabilizer.
\((3) \) Which intermediate fields \(F \) are normal extensions of \(K \)?
\((4) \) Which \(F \in \mathcal{F} \) have normal stabilizer?