Let $f(x) = f_1(x)f_2(x) \in \mathbb{Q}[x]$, where f_1 and f_2 are irreducible polynomials of degree at least 2, whose splitting fields K_1 and K_2 are two different subfield of \mathbb{C}, neither contained in the other. Let G be the Galois group of f over \mathbb{Q}. Prove that G has at least two different proper non-trival normal subgroups.

Suppose a finite group G acts on a set X. Fix $x \in X$ and let $H \subset G$ be its stabilizer. Prove $|G| = |H||G \cdot x|$ where $G \cdot x$ is the orbit of x under G. [Hint: Try to find a bijection from the set of cosets G/H to the orbit.]

Let G be the rotational symmetry group of the regular tetrahedron X, a solid with four faces consisting of equilateral triangles, four vertices and six edges. Consider the natural action of G on X by symmetries.

(1) Explain why there is a natural action of G on the vertices of X. Compute the cardinalities of the orbit and stabilizer of each vertex. Use this (and B) to compute $|G|$.

(2) Explain why there is a natural action of G on the faces of X. Compute the cardinalities of the orbit and stabilizer of each face. Use this (and B) to compute $|G|$ a different way.

(3) Explain why there is a natural action of G on the edges of X. Compute the cardinalities of the orbit and stabilizer of each vertex.

(4) Find four non-equal subgroups of G that are conjugate to each other by Exercise D(v) from last week. Is any of these normal in G?

Let G be the rotational symmetry group of a sulfur hexafluoride molecule, a solid with four faces consisting of equilateral triangles, four vertices and six edges. Compute the order of the rotational symmetry group of a sulfur hexafluoride molecule. What about a Dodecaborane molecule? (There are nice pictures of these molecules on their respective wikipedia pages.)