1. Find the Galois group (over \(\mathbb{Q} \)) of the polynomial \(x^4 - 18x^2 + 77 \). Express each element explicitly in cycle notation as elements of the permutation group of the roots.

Factor \(x^4 - 18x^2 + 77 = (x^2 - 7)(x^2 - 11) \) so the roots are \(\pm \sqrt{7}, \pm \sqrt{11} \) and the splitting field is \(L = \mathbb{Q}(\sqrt{7}, \sqrt{11}) \). Since \(L = K(\sqrt{7}) \) where \(K = \mathbb{Q}(\sqrt{11}) \), there is an automorphism of \(L \) fixing \(K \) which sends \(\sqrt{7} \) to any other root of \(x^2 - 7 \) in \(L \). So there is an element \(\phi \in G \) swapping \(\pm \sqrt{7} \) and fixing \(\sqrt{11} \). Similarly, there is one swapping \(\pm \sqrt{11} \) and fixing \(\sqrt{7} \). Ordering the roots \(\sqrt{7}, -\sqrt{7}, \sqrt{11}, -\sqrt{11} \), these two elements of the Galois group are (12) and (34) in \(S_4 \). Then

2. Let \(G \) be the group \(S_n \) acting on the set \(\mathcal{X} = \{1, 2, 3, \ldots, n\} \) in the obvious way.

 (1) Define the \textbf{stabilizer} of an element \(x \in \mathcal{X} \).
 (2) Prove that there is only one orbit for this action of \(S_n \) on \(\mathcal{X} \).
 (3) Prove that the stabilizer of each \(x \in \mathcal{X} \) is isomorphic to \(S_{n-1} \).
 (4) If \(x \neq y \in \mathcal{X} \), can the stabilizers of \(x \) and \(y \) be the same?