Worksheet on Support and Associated Primes of Modules

Let R be a commutative ring with 1. Let M be an R module.

DEFINITION. The **support** of M is the subset $\{P \in \text{Spec } R \mid M_P \neq 0\} \subset \text{Spec } R$.

PROPOSITION. If M is a finitely generated R-module, then $\text{Supp}(M)$ is the closed set of $\text{Spec } R$ given by $\mathbb{V}(\text{ann}_R(M))$ where $\text{ann}_R M$ is the ideal $\{r \in R \mid rM = 0\}$.

DEFINITION. A prime $P \in \text{Spec } R$ is an **associated prime** of M if and only if there is an injective R-module map $R/P \rightarrow M$. The set of all associated primes of M is called the **assassinator** of M and denoted $\text{Ass}(M)$.

THEOREM 1. The set of associated primes of a non-zero finitely generated module over a Noetherian ring is non-empty and finite. That is, $0 < |\text{Ass}(M)| < \infty$.

DEFINITION. A **zero-divisor** on M is an element $r \in R$ such that $rm = 0$ for some $m \in M \setminus \{0\}$.

THEOREM 2. Let M be a finitely generated module over a Noetherian ring. The set of all zero-divisors on M is the union of the Associated primes of M.

(1) Let M be an arbitrary R-module over an arbitrary ring R.
 (a) Show the support M is empty if and only if $M = 0$. [Hint: Remember the worksheet on localization!]
 (b) Show that if $P \in \text{Supp}(M)$, then $\mathbb{V}(P) \subset \text{Supp}(M)$. [Hint: If $Q \supset P$, describe a natural map $M_Q \rightarrow M_P$.]
 (c) Show that the support of R/I is $\mathbb{V}(I) \subset \text{Spec } R$.

(2) Consider the \mathbb{Z}-module $M = \bigoplus_{p \text{ odd prime}} \mathbb{Z}/p\mathbb{Z}$. Find the support of M and prove it is not closed in $\text{Spec } \mathbb{Z}$. Why doesn’t this contradict the Proposition? [Hint: Remember \otimes distributes over \oplus.]

(3) **PROOF OF THE PROPOSITION.** Let M be a finitely generated module over an arbitrary R.
 (a) Show that $\text{ann}_R M$ is an ideal of R.
 (b) Show that if m_1, \ldots, m_n generate M, then $\text{ann}_R(M) = \bigcap_{i=1}^n \text{ann}_R(m_i)$.
 (c) Prove $\text{Supp}(M) = \mathbb{V}(\text{ann}_R(M))$.

(4) Let M be an arbitrary R-module over an arbitrary ring R. Fix $P \in \text{Spec } R$.
 (a) Show that $\in \text{Ass}(M)$ if and only if $P = \text{ann}_R x$ for some non-zero $x \in M$.
 (b) Show that if R is a domain, the only associated prime of R is (0).
 (c) Let $R = K[x,y]$ and let $M = R/(xy, x^2)$. Show that $\{(x), (x,y)\} \subset \text{Ass}(M)$. [Hint: Use (a). It might also be useful to remember that $K[x,y]$ is a UFD.]

(5) Show that $\text{Ass}(M) \subset \text{Supp } M$ for any M. [Hint: Use the fact that R_P is a flat R-module, so it preserves injections.]
(6) Let \(R = K[x, y] \). Fix any maximal ideal \(m \) such that \(R/m \cong K \). Let \(M = \text{Hom}_K(R, R/m) \).
 (a) Describe a natural \(R \)-module structure on \(M \).
 (b) Show that the \(R \)-linear map \(R \to M \) sending \(r \) to the composition \(R \xrightarrow{r} R \to R/m \)
 induces an embedding \(R/m \hookrightarrow M \).
 (c) Show that \(m \) is an associated prime of \(\text{Hom}_K(R, K) \).

(7) Let \(R = K[x_1, x_2, x_3, \ldots]/J \) where \(J = \langle x_t^{t+1} \mid t \in \mathbb{N} \rangle \). Prove that \(\text{Spec} \) \(R \) consists of one point and that \(\text{Ass} \) \(R \) is empty. Why doesn’t this contradict Theorem 1? Is the reverse inclusion in Problem (5) true?

(8) A USEFUL LEMMA. Let \(R \) be Noetherian ring and \(M \) a non-zero \(R \)-module. Show that the set of ideals \(\{ J \subset R \mid \exists m \in M \setminus \{0\} \text{ s.t. } J = \text{ann}_R(m) \} \) has a maximal element, and any such maximal element is prime. \([\text{Hint: If } xy \in \text{ann}_R m, \text{ consider } \text{ann}_R(xm).] \)

(9) PROOF OF THEOREM 2. Let \(M \) be a finitely generated module over a Noetherian ring.
 (a) Let \(P \in \text{Ass}_R(M) \). Prove every element of \(P \) is a zero-divisor on \(M \). \([\text{Hint: Use (4a).}] \)
 (b) Assume that \(rm = 0 \) for some non-zero \(m \in M \). Show that there exists \(s \in S \) such that \(\text{ann}_R(sm) \) is prime and contains \(r \). \([\text{Hint: Use ideas from (8).}] \)
 (c) Prove Theorem 2.

(10) PRIME CYCLIC FILTRATIONS. In this problem we show that every non-zero finitely generated module \(M \) over a Noetherian ring \(R \) admits a filtration
 \[0 = M_0 \subset M_1 \subset M_2 \subset \ldots M_{n-1} \subset M_n = M \]
 such that each subquotient \(M_i/M_{i-1} \cong R/P_i \) for some \(P_i \in \text{Spec} \) \(R \).
 (a) Use Noetherian Induction to reduce to the case that every quotient of \(M \) has a prime cyclic filtration. \([\text{Hint: Recall Noetherian Induction—if we have a counterexample } M, \text{ mod out}} \)
 by a submodule \(N \) maximal with respect the property that \(M/N \) is also a counterexample.\]
 (b) Use (8) to find \(x \in M \) such that \(R/P \cong xR \subset M \) for some \(P \in \text{Spec} \) \(R \).
 (c) Prove that every finitely generated module over a Noetherian ring has a prime cyclic filtration. \([\text{Hint: Splice together } R/P \text{ and a filtration for } M/xR.] \)

(11) PROOF OF THEOREM 1. Fix an arbitrary ring \(R \).
 (a) Prove that if \(P \) is prime, then \(\text{Ass}(R/P) = \{P\} \).
 (b) Show that if \(0 \to M_1 \to M_2 \to M_3 \to 0 \) is an exact sequence of \(R \)-modules, then
 \(\text{Ass}(M_2) \subset \text{Ass}(M_1) \cup \text{Ass}(M_3) \). \([\text{Hint: If } P = \text{ann} \ x, \text{ consider two cases: either } Rx \cap M_1 = 0 \text{ or if not. Use (a) for the second case.}] \)
 (c) Suppose that \(M_0 \subset M_1 \subset M_2 \subset \ldots M_{n-1} \subset M_n = M \). Show that \(\text{Ass}(M) \subset \bigcup_{i=1}^{n} M_i/M_{i-1} \). \([\text{Hint: Use induction on } n \text{ and (b).}] \)
 (d) Prove that \(\text{Ass}(M) \subset \{P_1, P_2, \ldots, P_n\} \), the prime ideals appearing in a prime cyclic filtration of \(M \).
 (e) Prove the Theorem on the finiteness of \(\text{Ass}(M) \) for Noetherian \(M \) over Noetherian \(R \).

(12) Let \(M \) and \(N \) be two finitely generated modules over a ring \(R \).
 (a) Assume \((R, m)\) is local. Show that if \(M \) and \(N \) are non-zero, then so is \(M \otimes_R N \).
 \([\text{Hint: Consider } M \otimes_R N \to M/mM \otimes_R N/mN \cong M \otimes_R N \cong M/mM \otimes_{R/m} N/mN.] \)
 (b) Show that \((M \otimes_R N)_P \cong M_P \otimes_{R_P} N_P \).
 (c) Show that \(\text{Supp}(M \otimes_R N) = \text{Supp}(M) \cap \text{Supp}(N) \) as subsets of \(\text{Spec} \) \(R \).