Here are some comments and partial solutions for Homework 6 Problem 4. Please review this carefully as not only are finite fields important in many areas of mathematics, but these methods/ideas show up later. In particular, the idea of considering equivalence classes as elements of a set shows up literally everywhere in math (as quotient spaces/groups/rings/etc). So in particular, make sure you know how to check whether something “well-defined”. Some of this is more formal and with more details than necessary, but I wanted to make sure you understand the thinking.

(1), (2), (3) What does “well-defined” mean? For example, how do I show that

\[A : \mathbb{Z}_n \times \mathbb{Z}_n \rightarrow \mathbb{Z}_n \]
\[\overline{a} \times \overline{b} \mapsto \overline{a + b} \]

is well-defined?\(^1\)

Comment: Recall that \(\overline{a} = \{ a + kn \mid k \in \mathbb{Z} \} \), i.e. elements of \(\mathbb{Z}_n \) are subsets of \(\mathbb{Z} \). I could just as easily write \(\overline{a}' \), where \(a' \in \mathbb{Z} \) such that \(a' \in \overline{a} \), and then \(\overline{a} = \overline{a}' \) (here \(a \) and \(a' \) are called representatives of \(\overline{a} \)). Since there is nothing canonical about these choices and the definition of \(A \) depends on them, the definition of \(A \) could be ambiguous, i.e. different choices of representatives of \(\overline{a} \) and \(\overline{b} \) could give different images. So what needs to be checked is that if I choose different representatives, I will get the same image (i.e. that this really is a function!).

A correct solution: Let \(a' \in \overline{a} \) and \(b' \in \overline{b} \) be choices of representatives. That is, \(a - a' = k_1n \) and \(b - b' = k_2n \) for some \(k_1, k_2 \in \mathbb{Z} \). Then I want to make sure that \(A(\overline{a} \times \overline{b}) = A(\overline{a'} \times \overline{b'}) \), that is \(\overline{a + b} = \overline{a' + b'} \). This happens if \(n \) divides \((a + b) - (a' + b') \). Well

\[
(a + b) - (a' + b') = a - a' + b - b' = k_1n + k_2n = (k_1 + k_2)n
\]

which implies that \(\overline{a + b} = \overline{a' + b'} \). We write \(\overline{a + b} \) for \(A(\overline{a} \times \overline{b}) \).

The situation for multiplication is almost exactly the same, only you need to consider \(a'b' - ab \) instead. Checking the associative, commutative and distributive properties does not require anything particularly difficult, but the idea is to simply reduce it to the properties in \(\mathbb{Z} \), for example:

\[
\overline{a + b} = \overline{a + b} = \overline{b + a} = \overline{b + a}
\]

\(^1\)This notation means \(A \) is a map from \(\mathbb{Z}_n \times \mathbb{Z}_n \) to \(\mathbb{Z}_n \) that takes the element \(\pi \times \overline{b} \in \mathbb{Z}_n \times \mathbb{Z}_n \) (also written \((\pi, \overline{b}) \)) to the element \(a + b \in \mathbb{Z}_n \), that is \(A(\overline{a} \times \overline{b}) = \overline{a + b} \).

\(^2\)It is not correct to say \(\overline{a} = a + kn \) for some \(k \in \mathbb{Z} \)
(4) **A solution:** We will prove the contrapositive: Suppose that \(n = n_1 n_2 \). Then \(\overline{n_1 n_2} = \overline{0} \) in \(\mathbb{Z}_n \). Suppose \(\overline{n} \) has an inverse \(\overline{m} \). Then \(\overline{m} \overline{n_1 n_2} = \overline{m \overline{n_1 n_2}} = \overline{m \overline{0}} = \overline{0} \). So by definition, this means that \(n_2 = kn \) for some \(k \in \mathbb{Z} \). But then \(n = n_1 n_2 = n_1 kn \), which implies that \(n_1 k = 1 \), so since both \(n_1, k \in \mathbb{Z} \), this means \(n_1 = \pm 1 \). This shows that if every element of \(\mathbb{Z}_n \) has an inverse, then \(n \) is prime.

Note on rings (not required material): If \(R \) is a ring,\(^3\) the set of elements with multiplicative inverses in \(R \) are called **units**. This uses that the units of \(\mathbb{Z} \) are precisely \(\pm 1 \). It also uses the fact that if \(a \neq 0 \) and \(ab = ac \) in \(\mathbb{Z} \), then \(b = c \) (I’m going to call this property **♠**). Some rings have elements such that \(ab = 0 \) but \(a, b \) are both nonzero. An element \(a \) such that there exists such a \(b \) is called a **zero divisor**. A ring with no zero divisors is called a **division ring** and has property **♠** (why?). This solution shows that if \(n \) is not prime, then \(\mathbb{Z}_n \) has zero divisors. Another example of a ring with zero divisors is \(M_{n \times n}(k) \), the matrix ring over a field \(k \). Can you find zero divisors of \(M_{n \times n}(k) \)? (Note that while \(M_{n \times n} \) is a ring, it is not a commutative ring since multiplication is not commutative.)

(5) Suppose \(p \) is prime. Suppose that \(\overline{m} \in \mathbb{Z}_p \) such that \(\overline{m} \neq 0 \). That means that \(p \nmid m \), since the only positive divisors of \(p \) are 1 and \(p \), this means that \(gcd(m, p) = 1 \). On a previous homework, you proved that this means that there are \(a, b \in \mathbb{Z} \) such that \(am + bp = 1 \). So, if we take \(\overline{am} = \overline{am} = \overline{1} = \overline{-bp} = \overline{1} \). So \(\overline{m} \) is the multiplicative inverse of \(\overline{a} \).

(6) There are a few steps that need to be checked in this proof and I leave as an exercise to you.

Let \(F \) be a field with \(p \) elements. Since it is a field there are elements \(0_F \) and \(1_F \in F \) which act as additive and multiplicative identities. For \(k > 0 \), let \(k_F \) denote the sum of \(1_F \) with itself \(k \) times (that is \(n_F = \underbrace{1_F + \cdots + 1_F}_k \)). Define a map:

\[
\phi : \mathbb{Z}_p \to F \\
\overline{k} \mapsto k_F
\]

where if \(k < 0 \), we can use the division algorithm to choose a nonnegative representative (i.e. there are \(q, r \in \mathbb{Z} \) such that \(0 \leq r < p \) and \(k = qp + r \), then define \(\phi(\overline{k}) = r_F \)). We need to check that this is well-defined. If \(\overline{k} = \overline{k'} \in \mathbb{Z}_p \) (\(k > k' \geq 0 \)), then there is an \(m \in \mathbb{Z} \) such that \(k - k' = mp \) and \(m \geq 0 \). So \(\phi(k) - \phi(k') = k_F - k'_F = \underbrace{1_F + \cdots + 1_F}_{k} - \underbrace{1_F + \cdots + 1_F}_{k'} = \underbrace{1_F + \cdots + 1_F}_{m} = (mp)_F \). So to show that \(\phi \) is well-defined, it suffices to show that in \(F \) any multiple of \(p \) is zero.

Let \(f \) be the characteristic of \(F \). Note it can’t be 0 since \(F \) is finite. Then consider the elements \(\{0_F, 1_F, \ldots, (f - 1)_F\} \). This is a division ring (you should check this!). Since this is a field and \(F \) is a field containing it, \(F \) is a vector space over \(\mathbb{F} \). So we can fix a basis \(\{x_1, \ldots, x_d\} \), where \(d \) is the dimension of \(F \) as a vector space over \(\mathbb{F} \), and note that this implies that \(p = |F| = f^d \). But the only positive integers dividing \(p \) are 1 and \(p \). Since \(0 \neq 1 \) in any field, the characteristic of a field is never 1, so this means that \(f = p \). As a result of this, \(\phi \) is well-defined.\(^4\)

You should check that \(\phi \) is a field isomorphism (i.e. preserved multiplication and addition) but this is not difficult. Additionally, note that this implies that \(\phi \) is injective, since if \(\phi(\overline{k}) = \phi(\overline{k'}) \), so \(k_F = k'_F \). Since the characteristic of \(F \) is \(p \), this implies that \(p \) divides \(k - k' \), and so \(\overline{k} = \overline{k'} \). Since we have an injective field isomorphism between two finite fields of the same cardinality, this implies that \(\phi \) is a field isomorphism.

\(^3\)If you don’t know what a ring is, you can find a definition on wikipedia under “Ring (mathematics)”.

\(^4\)This proof in fact shows that any finite field is of the form \(p^d \) where \(p \) is the characteristic of the field. It can be shown that for every prime \(p \) and \(d > 0 \), there is a unique field of characteristic \(p \) and size \(p^d \), which completely classifies all finite fields. The proof above shows that this is exhaustive and uniqueness of addition, but showing existence and uniqueness of multiplication uses some algebra that is a little more advanced.