Let G be the group of rotational symmetries of a regular icosahedron.

1. Be sure you can explain how to compute the order of G, as well as the reason why G can also be viewed as the rotational symmetry group of a regular dodecahedron. For reference, it might be helpful to compute the number of vertices, edges and faces of the solids you are dealing with.

2. Compute the number of Sylow 3 and 5-groups of $|G|$ and make sure you can identify these physically in terms of rotations of an actual solid.

3. Compute the following data for G:

 1. The number of elements of order 5; describe them.
 2. The number of elements of order 3; describe them.
 3. The number of elements of order 2; describe them. [Hint: consider the action of G on the edges; what is the stabilizer of an edge?]
 4. The number of elements of order 1.

 Explain why this lists all elements of G, and why the breakdown into conjugacy classes must be a refinement of these. Explain why this list can not be the breakdown into conjugacy classes.

4. Find the conjugacy classes of G explicitly, and the number of elements in each.\(^1\)

\(^1\)Hints: recall that changing coordinates in \mathbb{R}^3 is conjugation by an invertible matrix. To see that all order 2 elements are conjugate, note that G acts transitively on the edges. Note also that G acts transitively on Sylow p-groups to restrict the ways (1) and (2) above could refine into classes. Also, because G acts on pairs of opposite faces, we can see that G acts a lot like a dihedral group on a face-pair.
5. Show that G is simple. [Hint: a normal subgroup is a union of conjugacy classes; why?]

6. Show that G has no non-trivial one dimensional representation (use (5)).

7. The icosahedral group comes equipped with a 3-dimensional representation. What is it? It is irreducible (Use 6)?

8. Figure out the number and dimensions of the irreducible complex representations of G, by using the fact that the sum of the dimensions of the irreducible reps is $|G|$.

9. By inscribing five (overlapping) cubes in a dodecahedron, show that G is isomorphic to A_5. [Hint: There are 5 ways to choose six pairs of opposite edges in dodecahedron.] Use this to confirm your answer to 8.

10. Using the permutation representation induced by (9), find a five dimensional permutation representation, and use it to construct an irreducible four dimensional representation.

11. Note that G acts on the six axes of rotations of the dodecahedron through opposite faces. Use this to construct a six dimensional representation and a five dimensional irreducible representation.

12. Considering $G \cong A_5$ as a subgroup of S_5, note that conjugation by an element $\sigma \in S_5$ induces a group automorphism of A_5 (and hence G). Explain how this might be used in general to construct additional representations of a group from known ones. Use this trick to construct a three dimensional irreducible representation of G not already on your list.

13. Complete the character table of G.

<table>
<thead>
<tr>
<th>Classes of G</th>
<th>χ_{triv}</th>
<th>χ_{taut}</th>
<th>χ_3</th>
<th>χ_4</th>
<th>χ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>#elements in each class</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>