Worksheet on Affine Noetherian Schemes

Let R be a commutative ring with 1.

Definition: A topological space is **irreducible** if it cannot be written as the union of two proper closed subspaces. An **irreducible component** of a topological space is a closed irreducible subset which is maximal with respect to inclusion.

Theorem 1. The irreducible components of $\text{Spec } R$ are the closed sets $\mathbb{V}(P)$ where P is a minimal prime of R, and $\text{Spec } R$ is the union of these irreducible components. In particular, if R is a domain, $\text{Spec } R$ is irreducible.

Theorem 2. Every ideal in a Noetherian ring has finitely many minimal primes. In particular, a Noetherian ring has finitely many minimal primes.

Corollary 2. If R is Noetherian, then $\text{Spec } R$ has finitely many irreducible components.

(1) Review the following facts about the Zariski topology on $\text{Spec } R$:

(a) The closed sets are $\mathbb{V}([f_\lambda]_{\lambda \in \Lambda}) = \mathbb{V}(\sqrt{\langle \{f_\lambda\}_{\lambda \in \Lambda} \rangle})$.

(b) For any subsets $I \subset J$ of R, $\mathbb{V}(J) \subset \mathbb{V}(I)$.

(c) $\bigcap_{\lambda \in \Lambda} \mathbb{V}(I_\lambda) = \mathbb{V}(\bigcup_{\lambda \in \Lambda} I_\lambda)$.

(d) $\bigcup_{i=1}^t \mathbb{V}(I_i) = \mathbb{V}(I_1 \cap \cdots \cap I_t) = \mathbb{V}(I_1 \cdot \cdots \cdot I_t)$.

(e) If $N \subset R$ denotes the nilradical of R, then the closed set $\mathbb{V}(N)$ is equal to $\text{Spec } R$.

(f) For any ideal I, contraction for the quotient map $R \to R/I$ induces a homeomorphism $\text{Spec } R/I \cong \mathbb{V}(I)$, where $\mathbb{V}(I) \subset \text{Spec } R$ has the subspace topology.

(2) Using the theorems above, which of the following are irreducible topological spaces? Count the components of those that are not.

(a) $\text{Spec } \mathbb{Z}$

(b) $\text{Spec } \mathbb{Z}/\langle 24 \rangle$

(c) $\text{Spec } \mathbb{Z}/\langle 25 \rangle$

(d) $\text{Spec } K[x, y, z, w]/\langle xy^5 + z^3y^2 + wx \rangle$. [Hint: Use Eisenstein with the prime $\langle z, w \rangle$.]

(e) $\text{Spec } K[x, y, z, w]/\langle xy, xz, xw \rangle$.

(f) $\text{Spec}(L_1 \times L_2)$ where L_1, L_2 are fields.

(g) $\text{Spec } R$ where R is the product, over all positive prime integers p, of the rings $\mathbb{Z}/p\mathbb{Z}$.

(3) **Proof of Theorem 1.** Let R be arbitrary.

(a) Prove that if $\text{Spec } R = \mathbb{V}(x)$, then x is nilpotent.

(b) Suppose that R is reduced. Show that if $\text{Spec } R$ is irreducible, then R is a domain. [Hint: Recall that $\mathbb{V}(xy) = \mathbb{V}(x) \cup \mathbb{V}(y)$.

(c) Assume R is a domain. Prove that $\text{Spec } R$ is irreducible. [Hint: What closed sets contain $\langle 0 \rangle$?]

(d) Show that every irreducible closed set of $\text{Spec } R$ has the form $\mathbb{V}(P)$ where $P \in \text{Spec } R$.

(e) Prove that the irreducible components of $\text{Spec } R$ are of the form $\mathbb{V}(P)$ where P is a minimal prime of R.

(f) Prove that $\text{Spec } R = \bigcup_{P \in \text{minSpec } R} \mathbb{V}(P)$.
(4) **Proof of Theorem 2.** We’ll use Noetherian Induction.

(a) Explain why Theorem 2 is equivalent to the (a priori weaker) statement that every Noetherian ring has finitely many minimal primes.

(b) To prove Theorem 2, fix a Noetherian ring \(R \). Consider the set of all ideals in \(R \) that have infinitely many minimal primes. Show that this set has a maximal element (with respect to inclusion) if it is non-empty.

(c) To prove Theorem 2, show that it suffices to prove it for \(R \) with the property that every proper quotient has finitely many minimal primes. [Hint: Use (b).]

(d) Explain why, if \(R \) in (c) is a domain, the proof of Theorem 2 is complete.

(e) With \(R \) as in (c), suppose \(x, y \in R \) are non-zero elements such \(xy = 0 \). Show that every minimal prime of \(R \) contains either \(x \) or \(y \) (or both).

(f) Again, with \(R \) as in (c), show that \(\langle x \rangle \) and \(\langle y \rangle \) have only finitely many minimal primes. [Hint: Use the Noetherian induction hypothesis (c).]

(g) Prove Theorem 2 and its corollary.

(5) **Lemma.** Fix a vector space over an infinite field. Let \(\{W_1, \ldots, W_n\} \) be a finite collection of vector subspaces. Prove that if \(V \) is a subspace contained in \(\bigcup_{i=1}^n W_i \), then \(V \subset W_i \) for some \(i \).

[Hint: Say \(x \in V \), and wlog, \(x \in W_1 \). Pick \(y \in V \setminus W_1 \). Consider the elements \(x + ay \) where \(a \in K \setminus \{0\} \). Induce.]

(6) In the ring \(\mathbb{C}[x, y, z] \), let \(U = \mathbb{C}[x, y, z] \setminus (\langle x \rangle \cup \langle y, z \rangle) \). Let \(R = U^{-1}\mathbb{C}[x, y, z] \). Describe Spec \(R \): what are the maximal and minimal primes? How many components? What is the dimension? What are the heights of the different maximal ideals? How does this look as a poset? as a subset of Spec \(\mathbb{C}[x, y, z] \)? What is its closure in Spec \(\mathbb{C}[x, y, z] \)?

[Hint: Use the Lemma in (5)! Don’t forget that ideals in a \(K \)-algebra are also \(K \)-subspaces.]

(7) **Prime Avoidance Lemma.** Let \(R \) be any ring, and let \(I_1, \ldots, I_t \) be ideals of \(R \). Suppose that an ideal \(J \subset I_1 \cup I_2 \cup \cdots \cup I_t \).

(a) If \(R \) is an algebra over an infinite field, prove that \(J \subset I_k \) for some index \(k \). [Hint: Use (5).]

(b) * More generally, assume most two of the ideals \(I_k \) are not prime. Prove that \(J \subset I_k \) for some index \(k \).

(8) * Consider a doubly indexed set of variables \(\{x_{ij} | i \leq j, \ i, j \in \mathbb{N}\} \). Let \(S \) be the polynomial ring they generate over \(\mathbb{C} \), so \(S = \mathbb{C}[x_{11}, x_{12}, x_{22}, x_{13}, x_{23}, x_{33}, \ldots] \). For each fixed \(j \), let \(P_j \) be the prime ideal generated by \(\{x_{1j}, x_{2j}, \ldots, x_{jj}\} \). Let \(U = S \setminus \bigcup_{j=1}^\infty P_j \).

(a) Show that \(U = S \setminus \bigcup_{n=1}^\infty P_n \) is a multiplicative set. Let \(R = U^{-1}S \).

(b) ** Show that if an ideal \(I \subset S \) is contained in \(\bigcup_{n=1}^\infty P_n \), then \(I \subset P_n \) for some \(n \). [Hint: for \(f \in I \), consider the (non empty, finite) set \(Q(f) := \{i \in \mathbb{N} | f \in P_i R\} \). Show we’re done unless \(\forall f \in I, \exists g \in I \) such that \(Q(f) \cap Q(g) = \emptyset \). Now look at \(f + x_m^n g \) (which is in \(I \)) for well-chosen \(m \in \mathbb{Q}(g) \) and \(d \gg 0 \].

(c) Prove that the maximal ideals of \(R = U^{-1}S \) are precisely the \(P_j R \).

(d) Show that \(R \) has chains of primes of arbitrarily long length.

(e) Prove that the localization of \(R \) at any maximal ideal is Noetherian.

(f) Prove that any non-zero \(f \in R \) is contained in at most finitely maximal ideals of \(R \).

(g) * Prove that a ring is Noetherian if its localization at any maximal ideal is Noetherian and any non-zero \(f \) is contained in only finitely many ideals.

(h) Prove that \(U^{-1}R \) is Noetherian but has infinite Krull dimension.