Worksheet on Normal domains

Let \(R \) be a domain.

DEFINITION. The **normalization** of \(R \) is the integral closure of \(R \) in its fraction field. On this worksheet, we let \(\tilde{R} \) denote the normalization of \(R \). A domain \(R \) is **normal** if \(\tilde{R} = R \).

THEOREM 1. A one dimensional Noetherian local ring is a DVR.

THEOREM 2. Let \(R \) be Noetherian and normal, \(f \in R \setminus \{0\} \). Every associated prime of \(\langle f \rangle \) has height one.

DEFINITION. A **divisor** on \(\text{Spec} \ R \) is a formal \(\mathbb{Z} \)-linear combination of height one primes of \(R \). The set of all divisors on \(\text{Spec} \ R \) form a free abelian group \(\text{Div}(R) \).

DEFINITION. Let \(R \) be a normal domain. For non-zero \(f \in R \) define the **divisor** of \(f \) to be the formal sum \(\sum_{i=1}^{t} a_i [P_i] \) where \(P_1, \ldots, P_t \) are the minimal primes of \(\langle f \rangle \) and \(a_i = \nu_{P_i}(f) \) where \(\nu_{P_i} \) is the valuation of the DVR \(R_{P_i} \).

DEFINITION. The **divisor class group**\(^1\) of \(\text{Spec} \ R \), denoted \(Cl(R) \) is the group \(\text{Div}(R) \) modulo the subgroup generated by divisors of non-zero elements \(f \in R \).

1. **Normalization commutes with localization.** Let \(R \) be a domain and \(U \subset R \) any multiplicative subset.
 (a) Be sure you understand why \(R \) and \(U^{-1}R \) have the same fraction field. Call it \(K \).
 (b) Prove that if \(\frac{a}{b} \in K \) is integral over \(R \), then \(\frac{a}{b} \) is integral over \(U^{-1}R \).
 (c) Conclude that \(\tilde{R} \subset U^{-1}R \) and also \(U^{-1}\tilde{R} \subset U^{-1}R \) as subsets of \(K \).
 (d) Show that if \(\frac{a}{b} \in K \) satisfies an equation of integral dependence
 \[
 X^n + \frac{r_1}{u_1} X^{n-1} + \cdots + \frac{r_{n-1}}{u_{n-1}} X + \frac{r_n}{u_n} \in U^{-1}R[X]
 \]
 over \(U^{-1}R \), then \(\frac{ua}{b} \in K \) is integral over \(R \) where \(u = \Pi_{i=1}^{n} u_i \).
 (e) Prove that \(U^{-1}\tilde{R} = U^{-1}R \). That is, *normalization commutes with localization.*

2. **Normality is a local property.** Prove the following are equivalent for a domain \(R \).
 (i) \(R \) is normal.
 (ii) \(U^{-1}R \) is normal for all multiplicative sets \(U \subset R \).
 (iii) \(R_P \) is normal for all \(P \in \text{Spec} \ R \).
 (iv) \(R_m \) is normal for all \(m \in \text{maxSpec} \ R \).
 [Hint: For (iv) implies (i), check the triviality of the \(R \)-module \(\tilde{R}/R \) locally.]

3. Prove that a UFD is normal.

\(^1\)Also called the **ideal class group** in number theory, particularly for number rings (finite extensions of \(\mathbb{Z} \)).
(4) Prove that an intersection of normal rings (with fraction field \(K \)) is normal. Use Theorem 1 to deduce that if \(R \) is Noetherian and normal, then the ring \(\bigcap_{ht1P \in SpecR} R_P \) is normal. [In fact: for Noetherian rings, \(R \) is normal if and only if \(R = \bigcap_{ht1P \in SpecR} R_P \); See Hochster’s Dec 4 lecture.]

(5) Let \(R \) be a Noetherian normal domain with fraction field \(K \). Define a group homomorphism \(K^* \to \text{Div} R \) so that the divisor class group of \(R \) is the cokernel.

(6) Let \(R \) be a normal Noetherian domain. Let \(q \) be \(p \)-primary where \(p \) is height one.
 (a) Show that \(q = p^{(n)} \) for some \(n \), where by definition, \(p^{(n)} = p^n R_p \cap R \).
 [Hint: Recall that \(q \) is \(p \)-primary if and only if \(\sqrt{q} = p \) and \(q R_p \cap R = q \). You will also need Thm 1.]
 (b) Show \(\text{div}(f) = n_1[p_1] + \cdots + n_t[p_t] \) where \(\langle f \rangle = p_1^{(n_1)} \cap \cdots \cap p_t^{(n_t)} \) is a primary decomp.

(7) **Dedekind Domains.** A **Dedekind domain** is a normal Noetherian ring of dimension 1. Show that the normalization of any finite integral extension of \(\mathbb{Z} \) is a Dedekind domain. Such a ring is called a **number ring**. [You may assume that the normalization of a finitely generated \(\mathbb{Z} \)-algebra is Noetherian. This is a non-trivial fact.]

(8) Let \(R \) be a Dedekind domain. Let \(q \) and \(q' \) be non-zero primary ideals with distinct radicals.
 (a) Show \(q \cap q' = qq' \). [Hint: Observe \(q + q' = R \).]
 (b) Explain why the primary decomposition of any ideal in \(R \) is unique.
 (c) Show \(p^n \neq p^{n+1} \) for all \(n \in \mathbb{N} \) and all non-zero \(p \in \text{Spec} R \). [Hint: NAK!]
 (d) Let \(q \) be \(p \)-primary. Show that \(q = p^n \) for some \(n \). [Hint: Recall that \(q \) is \(p \)-primary if and only if \(\sqrt{q} = p \) and \(q R_p \cap R = q \). You will also need Theorem 1.]
 (e) Prove ideals in a Dedekind domain factor uniquely as a product of prime ideals.

(9) Let \(R = K[x, y, z, w]/\langle xy - zw \rangle \).
 (a) Prove that \(R \) is a three dimensional domain.
 (b) Prove that \(R \) is not a UFD.
 (c) Prove that \(\langle x, z \rangle, \langle x, w \rangle, \langle y, z \rangle, \langle y, w \rangle \) are all height one prime ideals.
 (d) Show that \(R_{(x, z)} \cong K[z, y, \frac{1}{w}]_{(z)} \cong K[z, y, w]_{(z)} \).
 (e) Compute the divisor of \(\pi \in R \). [Hint: First find its minimal primes.]
 (f) Show that all primes in (c) are equal in \(\text{Cl}(R) \) up to sign.
 (g) * Prove that \(\text{Cl}(R) \) is isomorphic to \(\mathbb{Z} \).

(10) Let \(V \) be a valuation ring with fraction field \(V \). Prove that \(V \) is normal. [Hint: For \(\lambda \in K \), consider an equation of integral dependence over \(V \) and the possible values of \(\nu \) for its terms.]

(11) **Polynomial Rings over normal rings are Normal.**
 (a) Let \(R \) be a normal domain. Prove that \(R[x] \) is a Normal domain. [Hint: Use the fact that \(K[x] \) is a UFD to reduce to considering elements of \(K[x] \) integral over \(R[x] \).]
 (b) Prove that a directed union of normal domains is normal.
 (c) Prove that a polynomial ring over any normal ring in any number (even infinite) of variables is normal.

(12) * Prove Theorem 1. [The proof of Theorem 2 is in Mel’s notes on Dec 4.]

2See the paper “Noetherian rings without finite normalization” by Olberding for a detailed discussion.