Worksheet on Primary Decomposition: Uniqueness

Let R be a commutative ring with 1.

DEFINITION. A proper ideal q is **primary** if every zero-divisor in R/q is nilpotent.

TERMINOLOGY. A primary ideal q always has prime radical p; we say q is **p-primary**.

THEOREM ON UNIQUENESS OF PRIMARY DECOMPOSITION. Suppose an ideal J in an arbitrary ring admits a primary decomposition

$$J = q_1 \cap q_2 \cap \cdots \cap q_t.$$

Then J admits a **minimal primary decomposition**, meaning that the intersection can be assumed irredundant and that the q_i are p_i-primary for distinct primes p_i. In this case, the set

$$\{\sqrt{q_1}, \sqrt{q_2}, \ldots, \sqrt{q_t}\} = \{p_1, p_2, \ldots, p_t\}$$

is independent of the choice of minimal primary decomposition. Furthermore, the minimal primes among the set $\{p_1, p_2, \ldots, p_t\}$ are precisely the minimal primes of J, and for these minimal primes, the corresponding primary component is uniquely determined by $q_i = JR_{p_i} \cap R$.

NOETHERIAN CASE: Every ideal in a Noetherian ring admits a minimal primary decomposition $J = q_1 \cap q_2 \cap \cdots \cap q_t$. In this case, the set $\{p_1, p_2, \ldots, p_t\} = \text{Ass}(R/J)$.

CAUTION: In the non-Noetherian case, primary decompositions do not always exist for a given J, and the radicals of the primary components do not have to be associated primes.

(1) **LEMMA 1.** Prove that finite intersection commutes with taking radicals, localization, and computing colons. That is, for any finite set of ideals J_1, \ldots, J_t in an arbitrary ring R, prove that

(a) $\sqrt{(J_1 \cap J_2 \cdots \cap J_t)} = \sqrt{J_1} \cap \sqrt{J_2} \cdots \cap \sqrt{J_t}$;

(b) $(J_1 \cap J_2 \cdots \cap J_t)U^{-1}R = J_1U^{-1}R \cap J_2U^{-1}R \cdots \cap J_tU^{-1}R$ for any multiplicative set $U \subset R$; and

(c) $(J_1 \cap J_2 \cap \cdots \cap J_t) : x = (J_1 : x) \cap (J_2 : x) \cap \cdots \cap (J_t : x)$ for arbitrary $x \in R$.

(2) **LEMMA 2.** Prove that in any ring, if $P_1 \cap P_2 \cap \cdots \cap P_n$ is an intersection of mutually incomparable prime ideals, then minimal primes of this intersection are precisely the P_i. In particular, when is such an intersection prime? [Hint: $P_1P_2\cdots P_n \subset P_1 \cap P_2 \cap \cdots \cap P_n$.]

(3) **MINIMAL PRIMES.** Let J be an ideal in an arbitrary ring which admits a primary decomposition $q_1 \cap q_2 \cdots \cap q_t$.

(a) By grouping together primary ideals with the same radical, explain why we can assume the q_i have distinct radicals p_i. [Hint: A finite intersection of p-primary ideals is p-primary.]

(b) Prove that $\sqrt{J} = \bigcap_{i=1}^t p_i$.

(c) Prove the minimal primes among $\{p_1, p_2, \ldots, p_t\}$ are precisely the min primes of J.

(d) Observe that (a) and (c) together establish part of the Theorem on Uniqueness of Primary decomposition.
(4) **Lemma 3.** Let \(q \) be any \(p \)-primary ideal in an arbitrary ring \(R \).
(a) Prove that \(p \subset \sqrt{(q : x)} \). [Hint: First show \(q \subset (q : x) \).]
(b) Prove that
\[
\sqrt{(q : x)} = \begin{cases} \{p, R\} & \text{for } x \notin q \\ \{R\} & \text{for } x \in q. \end{cases}
\]
(c) Prove that for \(x \notin p \), we have \((q : x) = q \).

(5) **Uniqueness of the \(p_i \).** Let \(J = q_1 \cap q_2 \cdots \cap q_t \) be any primary decomposition of \(J \) in which the radicals \(p_i \) of \(q_i \) are distinct.
(a) Use Lemmas 1 and 3 to show that for any \(x \in R \),
\[
\sqrt{J : x} = \bigcap_{x \notin q_j} p_i.
\]
(b) Fix \(i \). Explain why, if the decomposition is irredundent, we can find \(x \) in every \(q_j \) except \(q_i \).
(c) With \(x \) as in (b), show that \(\sqrt{J : x} = p_i \).
(d) Show that if \(q_1 \cap q_2 \cap \cdots \cap q_t \) and \(q'_1 \cap q'_2 \cap \cdots \cap q'_m \) are two different minimal primary decompositions of an ideal \(J \), then
\[
\{\sqrt{q_1}, \sqrt{q_2}, \ldots, \sqrt{q_t}\} = \{\sqrt{q'_1}, \sqrt{q'_2}, \ldots, \sqrt{q'_m}\}.
\]
In particular \(t = m \). [Hint: Use (a), (c) and Lemma 2.]
(e) Conclude that part of the Theorem on Uniqueness of Primary decomposition is proven.

(6) **Minimal components.** Let \(J = q_1 \cap q_2 \cap \cdots \cap q_t \) be a primary decomposition.
(a) Let \(q \) be \(p \)-primary and \(P \) be any prime ideal such that \(p \not\subset P \). Show that \(qR_P = R_P \).
[Hint: Use Lemma 1(b) and (a).]
(b) Complete the proof of the Uniqueness Theorem for Primary Decomposition.

(7) Let \(R \) be the ring of all sequences of real numbers. Show that \(R \) has infinitely many minimal prime ideals, and therefore the zero ideal does not admit a primary decomposition.

(8) **Lemmas on Associated Primes.** Let \(M \) and \(N \) be arbitrary \(R \)-modules.
(a) Show \(\text{Ass}(M \oplus N) = \text{Ass}(M) \cup \text{Ass}(N) \). [Hint: Consider \(0 \to M \to M \oplus N \to N \to 0 \).]
(b) Show that \(\text{Ass}(R/J_1 \cap J_2) \subset \text{Ass}(R/J_1) \cup \text{Ass}(R/J_2) \). [Hint: Find \(R/J \to R/J_1 \oplus R/J_2 \).]
(c) For all multiplicative sets \(U \subset R \), we have the following inclusion of sets in \(\text{Spec } U^{-1}R: \)
\[
\{PU^{-1}R \mid P \in \text{Ass}(M) \text{ and } P \cap U = \emptyset\} \subset \text{Ass}(U^{-1}M).
\]
(d) * Prove the converse to (c) when \(R \) is Noetherian.
(e) * For \(R \) Noetherian, show that every minimal prime of \(J \) is in \(\text{Ass}(R/J) \).

(9) Assume that \(R \) is Noetherian. Let \(J = q_1 \cap \cdots \cap q_t \) be a minimal primary decomposition.
(a) Prove that if \(q \) is \(p \)-primary, then \(\text{Ass}(R/q) = \{p\} \). [Hint: If \(Q \in \text{Ass}(R/q) \), then \(Q = (q : x) \) for some \(x \notin q \). Show that \(q \subset Q \subset \sqrt{q} \).]
(b) Show that \(\text{Ass}(R/J) \subset \{\sqrt{q_1}, \ldots, \sqrt{q_t}\} \). Thus all associated primes contribute to the primary components.
(c) * Show that every \(\sqrt{q_i} \) is in \(\text{Ass}(R/J) \). [Hint: Take \(x \in q_i \) for all \(i > 1 \) but not \(q_1 \). Then \(p_1 = \sqrt{J : x} \). So \(p_1 \) is the only minimal prime of \(J : x \) and hence an associated prime of \(J : x \). Note that \(R/p_1 \to R/(J : x) \to R/J \).]