Theorem: Consider a linear transformation $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$. Let P be the parallelepiped which is the image of the standard unit n-cube. Then the n-volume of P is $|\det T|$.

A. Think about this theorem: What does the determinant of the linear transformation T mean? What is the Theorem saying in the $n = 2$ case? The $n = 3$ case?

B. Let A be a 2×2 matrix with orthogonal columns, $\vec{v}_1, \vec{v}_2 \in \mathbb{R}^2$.

1. Explain why the image of the unit square under the transformation T_A (left multiplication by A) is a rectangle. Sketch it, and label its sides.

2. Find the area of this image rectangle directly, in terms of \vec{v}_1 and \vec{v}_2 (not using the Theorem).

3. Verify the theorem for this A. [Hint: use the QR factorization of A.]

4. Let B be a 3×3 matrix whose columns $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^3$ satisfy $\vec{v}_i \cdot \vec{v}_j = 0$ for all $i \neq j$. Verify the theorem for B.

Solution note: The first column of the matrix, \vec{v}_1, is the image of \vec{e}_1, and the second column, \vec{v}_2, of A is the image of \vec{e}_2. These are two of the the sides of the image parallelogram. Since \vec{v}_1 are perpendicular, the image is a rectangle. The sides have lengths $||\vec{v}_1||$ and $||\vec{v}_2||$. So the area is $||\vec{v}_1|| \cdot ||\vec{v}_2||$.

Write $A = QR$, so $|\det A| = |\det Q||\det R|$. The matrix Q has orthonormal columns (and is square) so its determinant is ± 1. The matrix R is the change of basis matrix for the Gram-Schmidt process. Since all we would do is scale each column of A by its length, we know that R is diagonal: $R = \begin{bmatrix} ||\vec{v}_1|| & 0 \\ 0 & ||\vec{v}_2|| \end{bmatrix}$. So the determinant of R is the product $||\vec{v}_1|| \cdot ||\vec{v}_2||$. The exact same proof works for the 3×3 matrix with orthogonal columns: $B = QR$ where $R = \begin{bmatrix} ||\vec{v}_1|| & 0 & 0 \\ 0 & ||\vec{v}_2|| & 0 \\ 0 & 0 & ||\vec{v}_3|| \end{bmatrix}$.

So $|\det B| = |\det Q||\det R| = ||\vec{v}_1|| \cdot ||\vec{v}_2|| \cdot ||\vec{v}_3||$.

C. Let A be the 2×2 matrix $\begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}$ and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation it defines (by multiplication by A).

1. Sketch, in the target \mathbb{R}^2, the image of the standard unit square under T. If the columns of A are called \vec{v}_1 and \vec{v}_2, clearly label the vectors \vec{v}_1 and \vec{v}_2 on your sketch.

2. Suppose we apply the Gram Schmidt process to $\{\vec{v}_1, \vec{v}_2\}$ and get the vectors $\{\vec{u}_1, \vec{u}_2\}$. Add \vec{u}_1 to your sketch, clearly showing its relationship to \vec{v}_1. Show also \vec{u}_2 on your sketch.

3. Find the length of the side (the “base”) of the parallelogram given by \vec{v}_1. Explain why this is the same as $\vec{v}_1 \cdot \vec{u}_1$.

4. Find the height of the parallelogram. Explain why the height is $\vec{v}_2 \cdot \vec{u}_2$.

5. Compute the area of the image parallelogram.

6. Find the QR factorization of A.

7. Compute the determinant of A using the QR factorization. Why is it the product of the diagonal elements of R? How does it compare to the area in (5)?

Solution note: $\vec{u}_1 = \frac{1}{\sqrt{17}} \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ and $\vec{u}_2 = \frac{\vec{v}_2}{||\vec{v}_2||} = \frac{1}{\sqrt{17}} \begin{bmatrix} -1 \\ 4 \end{bmatrix}$. Your sketch should show \vec{u}_1 in the same direction as \vec{v}_1, whereas \vec{u}_2 is perpendicular. The vectors \vec{v}_1 and \vec{v}_2 are two of the sides of the image parallelogram, and the vector \vec{v}_2 is an altitude representing its height. We can think of this vector \vec{v}_2 as the component of \vec{v}_2 in the \vec{u}_2 direction, so its length is $\vec{v}_2 \cdot \vec{u}_2$. So the length of base of our parallelogram is $||\vec{v}_1|| = \vec{v}_1 \cdot \vec{u}_1$ and the height is $||\vec{v}_2|| = \vec{v}_2 \cdot \vec{u}_2$. So the area is "base times height" or $(\vec{v}_1 \cdot \vec{u}_1)(\vec{v}_2 \cdot \vec{u}_2) = \sqrt{17} \frac{11}{\sqrt{17}} = \text{The QR factorization is} \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 4/\sqrt{17} & -1/\sqrt{17} \\ 1/\sqrt{17} & 4/\sqrt{17} \end{bmatrix} \begin{bmatrix} \sqrt{17} & 7/\sqrt{17} \\ 0 & \frac{11}{\sqrt{17}} \end{bmatrix}$.

So determinant of A is $\det Q \det R = \sqrt{17} \frac{11}{\sqrt{17}} = 11$.
D. Prove the Theorem for the 2×2 case using the same technique as in C.

If you need help, here are the steps you should do: Let A be the 2×2 matrix $[\vec{v}_1 \ \vec{v}_2]$, where \vec{v}_1 and \vec{v}_2 are two vectors in \mathbb{R}^2. Let T be the linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$ given by multiplication by A.

1. Let $A = QR$ be the QR-factorization of A. Write $Q = [\vec{u}_1 \ \vec{u}_2]$. Prove that

$$\det A = (\vec{v}_1 \cdot \vec{u}_1)(\vec{v}_2 \cdot \vec{u}_2).$$

2. Sketch, in the target \mathbb{R}^2, the image of the standard unit square under T and label its vertices.

3. Prove that $(\vec{v}_1 \cdot \vec{u}_1) = ||\vec{v}_1||$ is the length of one of the sides of the image parallelogram (call this side “the base”).

4. Prove that $(\vec{v}_2 \cdot \vec{u}_2)$ is the height of the image parallelogram perpendicular to the base found in (3).

5. Prove the Theorem at the top of the worksheet in the case $n = 2$.

Solution note: We did this above: The image parallelogram has base $\vec{v}_1 \cdot \vec{u}_1$ and the height is $\vec{v}_2 \cdot \vec{u}_2$. The QR factorization is

$$[\vec{v}_1 \ \vec{v}_2] = [\vec{u}_1 \ \vec{u}_2] \begin{bmatrix} \vec{v}_1 \cdot \vec{u}_1 & \vec{v}_2 \cdot \vec{u}_1 \\ 0 & \vec{v}_2 \cdot \vec{u}_2 \end{bmatrix}.$$

So determinant of A is $\det Q \det R = \pm(\vec{v}_1 \cdot \vec{u}_1)(\vec{v}_2 \cdot \vec{u}_2) = \pm\text{height} \times \text{base} = \text{area of image parallelogram}$.

E. The Sign of the Determinant. Let A be a 2×2 matrix as in (B) representing a linear transformation sending \vec{e}_1 to \vec{v}_1 and \vec{e}_2 to \vec{v}_2. Investigate the geometric meaning of the sign of the determinant by sketching \vec{v}_1 and \vec{v}_2 in several different cases, some where the determinant of A is negative and some where it is positive. What general observation can you make?

Solution note: The sign is positive if the orientation of $\{T(\vec{e}_1), T(\vec{e}_2)\}$ is the same as $\{\vec{v}_1, \vec{v}_2\}$. This means the acute angle between them has $T(\vec{e}_1)$ as the right edge and $T(\vec{e}_2)$ as the left edge (just like the acute angle between \vec{e}_1 and \vec{e}_2. The sign is negative if the orientation is swapped.

F. Let A be the 3×3 matrix $[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3]$.

1. Use the QR-factorization to show that

$$\det A = (\vec{v}_1 \cdot \vec{u}_1)(\vec{v}_2 \cdot \vec{u}_2)(\vec{v}_3 \cdot \vec{u}_3),$$

where \vec{u}_1, \vec{u}_2, \vec{u}_3 is obtained from $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ by the Gram-Schmidt process.

2. Imagine the image of the standard unit cube under the linear transformation defined by multiplication by A. Why do \vec{v}_1, \vec{v}_2, and \vec{v}_3 form three of its edges? Compare to the picture in the book in Section 6.3. What notation does the book have for $(\vec{v}_1 \cdot \vec{u}_1)$, $(\vec{v}_2 \cdot \vec{u}_2)$ and $(\vec{v}_3 \cdot \vec{u}_3)$?

3. The image parallelepiped from (2) has sides that are parallelograms. Explain why one of these sides (let’s call it the “base”) has area $(\vec{v}_1 \cdot \vec{u}_1) \times (\vec{v}_2 \cdot \vec{u}_2)$.

4. Explain why the height of the parallelepiped is $(\vec{v}_3 \cdot \vec{u}_3)$.

5. Show that the volume of the parallelepiped is $(\vec{v}_1 \cdot \vec{u}_1)(\vec{v}_2 \cdot \vec{u}_2)(\vec{v}_3 \cdot \vec{u}_3)$.

6. Prove that for a 3×3 matrix A, the volume of the image of the standard unit cube under the linear transformation given by A is $|\det A|$.

7. Do you see why the Theorem on the previous page holds in the case $n = 3$? What about the arbitrary dimensional case?

8. What do you think the sign of the determinant of A tells us?