The Spectral Theorem: An \(n \times n \) matrix is orthogonally diagonalizable if and only if it is symmetric.

Definition: Let \(A \) be an \(n \times n \) matrix. We say that \(A \) is orthogonally diagonalizable if either of the two equivalent conditions holds:

1. There exists an orthogonal matrix \(S \) such that \(S^{-1}AS \) is diagonal;
2. \(A \) has an orthonormal eigenbasis.

A. Consider the linear transformation of \(\mathbb{R}^2 \) given by left multiplication by \(A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \).

1. How do I know it has an orthonormal eigenbasis?
2. Describe the map geometrically. Now find an orthogonal eigenbasis geometrically, using pure geometric thinking.
3. Write down an orthogonal \(S \) and diagonal \(D \) such that \(D = S^{-1}AS \). This is called “orthogonally diagonalizing \(A \”).
4. Find a matrix \(U \) such that \(U^T AU \) is diagonal.

B. Let \(A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \).

1. Without computing anything, how do I know \(A \) is diagonalizable? What can you say about its eigenvectors?
2. Find the eigenvalues of \(A \).
3. Find one eigenvector of \(A \).
4. Use the spectral theorem to find another eigenvector of \(A \).
5. Find an orthonormal eigenbasis for the transformation \(T_A \).
6. Find orthogonal \(S \) such that \(S^{-1}AS \) is diagonal.
7. Is there an \(S \) such that \(S^TAS \) is diagonal?
8. I claim that there is a unit square in \(\mathbb{R}^2 \) such that \(T_A \) takes that square to a rectangle whose sides are length 2 and 4. Explain.

C. Define symmetric matrix. Prove that if \(A \) is orthogonally diagonalizable, then \(A \) is symmetric. [This proves one direction of the spectral theorem.]

D. Find an example of a matrix that is diagonalizable but not orthogonally diagonalizable.
E. **Prove or Disprove**: Justify or give a counterexample:

1. If A is symmetric, then there is a matrix S such that S^TAS is diagonal.
2. Every orthogonal matrix is orthogonally diagonalizable.
3. If A has an orthonormal eigenbasis, then every eigenbasis is orthonormal.
4. If P is any 5×9 matrix, then PP^T has an orthonormal eigenbasis.

F. Fix a matrix $A \neq kI_n$ for any scalar k. Consider the linear transformation $\mathbb{R}^{n\times n} \xrightarrow{f_A} \mathbb{R}^{n\times n}$ sending a matrix X to $AX - XA$.

1. Show that I_3 is an eigenvector of f_A. Show that every matrix of the form A^t, where t is a natural number, is an eigenvector.
2. Prove that the image of f_A has dimension at most $n^2 - 2$.
3. Find a non-zero, non-identity matrix A such that the zero-eigenspace of f_A is all of $\mathbb{R}^{2\times 2}$.

G. **Prove** that if A is a 2×2 symmetric matrix, then $f(A) = 0$ where f is the characteristic polynomial of A.

H. **The proof of the spectral theorem**.

1. Show that if A can be orthogonally diagonalized, then A is symmetric. [Hint: write A as product of matrices you can easily transpose.]
2. Suppose A is symmetric. Let \vec{v}_1 and \vec{v}_2 be eigenvectors with *distinct* eigenvalues. Compute the matrix products

 $\vec{v}_1^T A \vec{v}_2$ and $\vec{v}_1^T A^T \vec{v}_2$,

 so that each is expressed in terms of $\vec{v}_1 \cdot \vec{v}_2$.
3. Deduce that if λ and μ are distinct eigenvalues of a symmetric matrix, then the corresponding eigenspaces are orthogonal.
4. Prove that a symmetric matrix is diagonalizable, then it is orthogonally diagonalizable. (Hint: use Gram-Schmidt on each eigenspace).

(This is not a complete proof of the Spectral Theorem—we still need to see why a symmetric matrix is diagonalizable).