1. Show that \(\int_a^b (f(x) + g(x)) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx \) using Riemann sums.

2. Show that \(\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2} \right)^2 \) using two methods, (a) and (b), as indicated below.

 a) Use a telescoping sum as in class.

 b) Consider the square on the right. Each side is divided into segments of length \(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ..., \frac{1}{n} \), so that the length of each side is \(\frac{n(n+1)}{2} \). Now consider the regions \(a_1, a_2, a_3, ..., a_n \), where \(a_1 \) is a square with side 1, and region \(a_i \) for \(i = 2, 3, ..., n \) is L-shaped. Show that the area of region \(a_i \) is \(i^3 \). Finally note that the area of the square can be computed two ways - (1) squaring the length of a side, (2) summing the areas of regions \(a_1, a_2, a_3, ..., a_n \).

3. Evaluate \(\int_0^1 x^3 \, dx \) two ways.

 a) Riemann sums
 b) FTC

4. Evaluate \(\int_a^b x \, dx \) by Riemann sums.

5. a) Express \(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{(i/n)^2} \) as an integral.
 b) Find the derivative of \(f(x) = \int_0^x \sqrt{1+t^3} \, dt \).

6. Evaluate by any means.
 a) \(\lim_{n \to \infty} \frac{1}{n} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{2}{n}} + \sqrt{\frac{3}{n}} + \cdots + \sqrt{\frac{n}{n}} \right) \)
 b) \(\int_1^4 \frac{dx}{\sqrt{x}} \)

7. A metal rod of length \(L \) m and cross-sectional area \(A \) m\(^2\) has mass density \(\rho(x) \) kg/m\(^3\), where \(x \) is measured in meters (m) from one end of the rod. (a) Find an expression for the total mass of the rod. (b) Compute the total mass for the case \(L = 4 \) m, \(A = 1 \) m\(^2\), \(\rho(x) = 9 + 2 \sqrt{x} \) kg/m\(^3\).

8. a) Derive the formula for the sum of a finite geometric series,
 \[\sum_{i=0}^{n} r^i = 1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r}, \text{ if } r \neq 1. \]
 (hint: check the formula for \(n = 0, 1, 2 \) and then show it is true in general.)

 b) A student obtains a $1,000 loan and repays 50% of the balance each year, i.e. $500 is repaid in year 1, $250 is repaid in year 2, and so on. Express the total amount repaid after 10 years as a series and evaluate it using part (a).

 c) Evaluate \(\int_0^1 e^x \, dx \) using Riemann sums. (this completes problem 5c from hw1)

 d) What is the formula for the sum in part (a) if \(r = 1? \)

9. Consider the integral \(I = \int_0^1 e^{-x} \, dx = 1 - e^{-1} = 0.63212056 \). Let \(R_n, M_n \) be the right-hand and midpoint Riemann sums with \(n \) intervals. Construct a table as follows (use a calculator). column 1: \(n \) (take \(n = 1, 2, 4 \)); column 2: \(\Delta x \); column 3: \(R_n \); column 4: \(|I - R_n| \); column 5: \(M_n \); column 6: \(|I - M_n| \). For a given value of \(n \), which method gives a more accurate answer? When \(\Delta x \) decreases by 1/2, by what factor does the error decrease for each method?

announcement

The Science Learning Center offers study groups for Math 156 students. Check the SLC website www.lsa.umich.edu/slc for information. Online registration begins on Wednesday Sept 16 at 2pm and study groups begin meeting on Sunday Sept 20.