1. The Laplace transform of a function \(f(t) \) is a new function \(F(s) = \int_0^\infty f(t)e^{-st}dt \); this construction is used in solving differential equations. Find the Laplace transform \(F(s) \) of the following functions.
 a) \(f(t) = 1 \)
 b) \(f(t) = e^t \)
 c) \(f(t) = t \)

 note: To ensure the integral converges, we assume \(s > 0 \) in (a,c) and \(s > 1 \) in (b).

2. Consider the integral \(\int_0^\infty \left(\frac{x}{x^2 + 1} - \frac{c}{3x + 1} \right) dx \), where \(c > 0 \) is a constant.

 a) Show that evaluating the integral as \(\int_0^\infty \frac{x}{x^2 + 1} dx - \int_0^\infty \frac{c}{3x + 1} dx \) gives \(\infty - \infty \), which is undefined.

 b) Consider the functions \(\frac{x}{x^2 + 1} \) and \(\frac{c}{3x + 1} \); for what value of \(c \) are they asymptotic to each other as \(x \to \infty \)?

 c) Let \(c \) have the value found in (b), and evaluate the integral by combining the two antiderivatives. In this way we make sense of the expression \(\infty - \infty \).

3. Three students order a 14 inch pizza, and instead of slicing it the usual way, they slice it by two parallel cuts, at \(x = a \) and \(x = -a \). Find a formula for \(a \) ensuring that each student gets the same amount of pizza. Evaluate the integrals in the formula by the FTC, and solve for \(a \) using Maple (fsolve command) or a calculator. Express the answer in inches.

4. Find the antiderivative by the given method. These antiderivatives were derived in class by other methods; your current answers should be equivalent to those obtained in class.

 a) \(\int \sec \theta \, d\theta = \int \sec \theta \frac{\sec \theta + \tan \theta}{\sec \theta + \tan \theta} \, d\theta \), then substitute \(u = \sec \theta + \tan \theta \)

 b) \(\int \frac{du}{1 - u^2} = \int \frac{1 - u + u}{1 - u^2} \, du = \int \frac{1 - u}{1 - u^2} \, du + \int \frac{u}{1 - u^2} \, du = \int \frac{du}{1 + u} + \int \frac{u \, du}{1 - u^2} \), then integrate each term

5. The van der Waals equation of state of a gas gives the pressure \(P \) in terms of the volume \(V \) and temperature \(T \) as \(P = \frac{RT}{V - b} - \frac{a}{V^2} \), where \(R \) is the ideal gas constant, and \(a, b \) are positive constants depending on the type of molecules in the gas. Note that when \(a = b = 0 \), the vdW formula reduces to the ideal gas law \(PV = RT \). In an isothermal change of state, the temperature \(T \) is constant, and the work done in compressing the gas from volume \(V_1 \) to volume \(V_2 \) is given by \(W = \int_{V_1}^{V_2} P \, dV \). Evaluate the integral and find \(W \) in terms of \(V_1, V_2, T, R, a, b \).

6. Consider a circular sector with radius \(r \) and angle \(\theta \) in the \(xy \)-plane. Let \(L \) be the arc length of the curved sector edge, and let \(A \) be the sector area. Show that \(L = r \theta, A = \frac{1}{2} r^2 \theta \), using the formulas for the arc length of a graph, \(L = \int_a^b \sqrt{1 + (f'(x))^2} \, dx \), and the area under a graph, \(A = \int_a^b f(x) \, dx \). In each case you need to choose appropriate \(f(x), a, b \), and evaluate the formulas to obtain \(L, A \) in terms of \(r, \theta \). In the case of the area, write \(A = A_1 + A_2 \), where \(A_1 \) is the area of a triangle and \(A_2 \) is the area under the graph of a curve. (hint: in this problem \(\theta \) is a given fixed parameter; when you apply trig substitution you must use a different symbol for the angle, e.g. \(\phi \))