chapter 2 : rootfinding

section 2.1 : bisection method

def : Given \(f(x) \), a number \(p \) satisfying \(f(p) = 0 \) is called a root of \(f(x) \).

ex : \(f(x) = x^2 - 3x + 2 \) \(\Rightarrow \) \(p = 1, 2 \)
\(f(x) = x^2 - 3 \) \(\Rightarrow \) \(p = \pm \sqrt{3} \)

question: How can we find the roots of a general function \(f(x) \)?

idea : Find an interval \([a, b] \) such that \(f(a) \) and \(f(b) \) have opposite sign. Then \(f(x) \) has a root in \([a, b] \) by the Intermediate Value Theorem (Math 451 - advanced calculus).

\[
\begin{array}{c|c|c|c}
\hline
& f(x) & & \\
\hline
a & p & \frac{a+b}{2} & b \\
\hline
a_0 & & \mathbf{b}_1 & \\
\hline
a_1 & & & \mathbf{b}_2 \\
\hline
a_2 & & & \mathbf{b}_2 \\
\hline
\end{array}
\]

Consider the midpoint \(\frac{a+b}{2} \). The root is contained in either the left subinterval \([a, \frac{a+b}{2}] \) or the right subinterval \([\frac{a+b}{2}, b] \); to determine which one, compute \(f(\frac{a+b}{2}) \). Then repeat.

bisection method \((\text{assume } f(a) \cdot f(b) < 0) \)

1. \(n = 0 \) , \(a_0 = a \) , \(b_0 = b \)
2. \(x_n = \frac{a_n + b_n}{2} \) : current estimate of the root
3. if \(f(x_n) \cdot f(a_n) < 0 \) , then \(a_{n+1} = a_n \) , \(b_{n+1} = x_n \)
4. else \(a_{n+1} = x_n \) , \(b_{n+1} = b_n \)
5. set \(n = n + 1 \) and go to line 2

ex : \(f(x) = x^2 - 3 \), \(f(1) = -2 \), \(f(2) = 1 \) \(\Rightarrow \) there is a root \(p \) in \([1, 2] \), \(p = 1.73205 \)

| \(n \) | \(a_n \) | \(b_n \) | \(x_n \) | \(f(x_n) \) | \(|p - x_n| \) |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 1.5 | -0.75 | 0.2321 |
| 1 | 1.5 | 2 | 1.75 | 0.0625 | 0.0179 |
| 2 | 1.5 | 1.75 | 1.625 | -0.3594 | 0.1071 |
| 3 | 1.625 | 1.75 | 1.6875 | -0.1523 | 0.0446 |
| 4 | 1.6875 | 1.75 | 1.71875 | -0.0459 | 0.0133 |
error bound for the bisection method

\[
|p - x_n| \leq |b_n - a_n| = \frac{1}{2}|b_{n-1} - a_{n-1}| = \left(\frac{1}{2}\right)^2|b_{n-2} - a_{n-2}| = \cdots = \left(\frac{1}{2}\right)^n|b_0 - a_0|
\]

e x : how many steps are needed to ensure that the error is less than \(10^{-3}\)?

\[
\left(\frac{1}{2}\right)^n|b - a| \leq 10^{-3} \Rightarrow n \geq 10
\]

stopping criterion : here are three options

\[
|b_n - a_n| < \epsilon , \quad |f(x_n)| < \epsilon , \quad n = n_{\text{max}}
\]

section 2.3 : fixed-point iteration

Suppose that \(f(x) = 0\) is equivalent to \(x = g(x)\). Then \(p\) is a root of \(f(x)\) if and only if \(p\) is a fixed point of \(g(x)\).

\[
\begin{align*}
\text{ex} : f(x) &= x^2 - 3 = 0 \\
x &= \frac{3}{x} = g_1(x) , \quad x = x - (x^2 - 3) = g_2(x) , \quad x = x - \left(\frac{x^2 - 3}{2}\right) = g_3(x)
\end{align*}
\]

We try to solve \(x = g(x)\) by computing \(x_{n+1} = g(x_n)\) with some initial guess \(x_0\). This process is called fixed-point iteration.

<table>
<thead>
<tr>
<th>(n)</th>
<th>case 1</th>
<th>case 2</th>
<th>case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x_n)</td>
<td>(x_n)</td>
<td>(x_n)</td>
</tr>
<tr>
<td>0</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2.25</td>
<td>1.875</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>0.1875</td>
<td>1.6172</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3.1523</td>
<td>1.8095</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>-3.7849</td>
<td>1.6723</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-15.1106</td>
<td>1.7740</td>
</tr>
</tbody>
</table>

Case 1 and case 2 diverge, but case 3 converges (recall: \(p = 1.73205\)).
question: what determines whether fixed point iteration converges or diverges? Let’s consider two examples.

The 1st example diverges and the 2nd example converges.

thm
Let $k = \max |g'(x)|$. Then fixed-point iteration converges if and only if $k < 1$.

note: this is consistent with the two examples above.

pf
\[
|p - x_{n+1}| = |g(p) - g(x_n)| = |g'(\zeta)(p - x_n)| \leq k|p - x_n|
\]
\[\uparrow\]
Mean Value Theorem
\[
|p - x_{n+1}| \leq k|p - x_n| \leq k^2|p - x_{n-1}| \leq \cdots \leq k^{n+1}|p - x_0| \quad \text{ok}
\]

note
1. We showed that $|p - x_n| \leq k|p - x_{n-1}|$; this is called linear convergence and k is called the asymptotic error constant.
2. When x_0 is sufficiently close to p, we can choose $k = |g'(p)|$.

recall: $f(x) = x^2 - 3$, $p = \sqrt{3} = 1.73205$

$g_1(x) = \frac{3}{x} \Rightarrow g_1'(x) = -\frac{3}{x^2} \Rightarrow |g_1'(p)| = 1$: diverges

$g_2(x) = x - (x^2 - 3) \Rightarrow g_2'(x) = 1 - 2x \Rightarrow |g_2'(p)| = 2.4641$: diverges

$g_3(x) = x - \left(\frac{x^2 - 3}{2}\right) \Rightarrow g_3'(x) = 1 - x \Rightarrow |g_3'(p)| = 0.73205$: converges

3. The bisection method also converges linearly, with $k = \frac{1}{2}$.

section 2.4 Newton’s method

idea : local linear approximation

\[f(x) \]

\[\text{tangent line} \]

slope = \(f'(x_n) = \frac{0 - f(x_n)}{x_{n+1} - x_n} \Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \)

ex : \(f(x) = x^2 - 3 \Rightarrow x_{n+1} = x_n - \frac{x_n^2 - 3}{2x_n} \)

| \(n \) | \(x_n \) | \(f(x_n) \) | \(|p - x_n| \) |
|---|---|---|---|
| 0 | 1.5 | -0.75 | 0.23205081 |
| 1 | 1.75 | 0.0625 | 0.01794919 |
| 2 | 1.73214286 | 0.00031888 | 0.00009205 |
| 3 | 1.73205081 | 0.00000001 | 0.00000001 |

note
Newton’s method is an example of fixed point iteration, \(x_{n+1} = g(x_n) \), where the iteration function is \(g(x) = x - \frac{f(x)}{f'(x)} \).

Then \(g'(x) = 1 - \frac{f'(x)^2 - f(x) \cdot f''(x)}{f'(x)^2} \Rightarrow g'(p) = 1 - \frac{f'(p)^2 - f(p) \cdot f''(p)}{f'(p)^2} = 0. \)

Here we assumed that \(f(p) = 0, f'(p) \neq 0 \), i.e. \(p \) is a simple root of \(f(x) \). (This is the most common case). This implies that Newton’s method converges faster than linearly; in fact we have \(|p - x_{n+1}| \leq C|p - x_n|^2 \), i.e. quadratic convergence.

pf
\[p - x_{n+1} = g(p) - g(x_n) = g(p) - (g(p) + g'(p)(x_n - p) + O(x_n - p)^2) \quad \text{ok} \]
ex: page 102, volume of chlorine gas

\(P \) : pressure, \(V \) : volume, \(T \) : temperature

\(PV = nRT \) : ideal gas law

\(n \) : number of moles present

\(R \) : universal gas constant, \(R = 0.08206 \text{ atm} \cdot \text{liter/(mole} \cdot \text{K)}

\[
\left(P + \frac{n^2a}{V^2} \right) (V - nb) = nRT \quad \text{van der Waals equation}
\]

\(a \) : accounts for intermolecular attractive forces, \(a = 6.29 \text{ atm} \cdot \text{liter}^2/\text{mole}^2 \)

\(b \) : accounts for intrinsic volume of gas molecules, \(b = 0.0562 \text{ liter/mole} \)

Take \(n = 1 \) mole, \(P = 2 \text{ atm} \), \(T = 313 \text{ K} \), and find \(V \) by Newton’s method with starting guess \(V_0 \) given by the ideal gas law.

\[
f(V) = \left(P + \frac{n^2a}{V^2} \right) (V - nb) - nRT, \quad f'(V) = \left(P + \frac{n^2a}{V^2} \right) + \left(\frac{-2n^2a}{V^3} \right) (V - nb)
\]

\[
\begin{array}{c|c}
 n & V_n \\
 \hline
 0 & 12.84238999999998 \\
 1 & 12.651154813406302 \\
 2 & 12.651099337119016 \quad \text{slightly less than } V_0 \text{ given by ideal gas law}
\end{array}
\]

We see that \(V_0 \) has 2 correct digits and \(V_1 \) has 5 correct digits. How many correct digits does \(V_2 \) have? (hw)

note

1. alternative derivation: \(f(x_{n+1}) = f(x_n) + f'(x_n)(x_{n+1} - x_n) + \cdots + 0 \)

2. Newton’s method converges rapidly, but it requires extra work to compute \(f'(x_n) \). Is there an alternative?

section 2.5 secant method
slope : \(\frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} \), equation : \(\frac{y - f(x_n)}{x - x_n} = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} \)

\((x, y) = (x_{n+1}, 0) \Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(x_{n-1})} : \text{secant method} \)

note
1. The secant method requires two starting values, \(x_0, x_1 \).
2. It can be shown that \(|p - x_n| \leq C|p - x_{n-1}|^{1.6} \), so the secant method converges faster than fixed-point iteration, but slower than Newton’s method.

<table>
<thead>
<tr>
<th>method</th>
<th>rate of convergence</th>
<th>cost per step</th>
</tr>
</thead>
<tbody>
<tr>
<td>bisection</td>
<td>linear, (k = \frac{1}{2})</td>
<td>(f(x_n))</td>
</tr>
<tr>
<td>fixed-point iteration</td>
<td>linear, (k =</td>
<td>g'(p)</td>
</tr>
<tr>
<td>Newton</td>
<td>quadratic</td>
<td>(f(x_n), f'(x_n))</td>
</tr>
<tr>
<td>secant</td>
<td>between linear and quadratic</td>
<td>(f(x_n))</td>
</tr>
</tbody>
</table>

note: Bisection is guaranteed to converge if the initial interval contains a root, but the other methods can be very sensitive to the choice of \(x_0 \).

rootfinding for nonlinear systems

ex: page 141, chemical reactions

\[
\begin{align*}
2A + B & \rightleftharpoons C \\
A + D & \rightleftharpoons C
\end{align*}
\]
: reversible reactions for reactants \(A, B, D \) and product \(C \)

\(a_0, b_0, d_0 \) : initial concentrations (moles/liter) in chemical reactor (known)

\(c_1, c_2 \) : equilibrium concentrations of \(C \) produced by each reaction (unknown)

\(k_1, k_2 \) : equilibrium reaction constants (known)

These variables are related by the Law of Mass Action.

<table>
<thead>
<tr>
<th>compound</th>
<th>equilibrium concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(a_0 - 2c_1 - c_2)</td>
</tr>
<tr>
<td>(B)</td>
<td>(b_0 - c_1)</td>
</tr>
<tr>
<td>(C)</td>
<td>(c_1 + c_2)</td>
</tr>
<tr>
<td>(D)</td>
<td>(d_0 - c_2)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
k_1 &= \frac{c_1 + c_2}{(a_0 - 2c_1 - c_2)(b_0 - c_1)} \\
k_2 &= \frac{c_1 + c_2}{(a_0 - 2c_1 - c_2)(d_0 - c_2)}
\end{align*}
\]

Hence to find \(c_1, c_2 \) we need to solve a system of nonlinear equations.
Newton’s method for nonlinear systems

Given \((x_n, y_n)\), we want to find \((x_{n+1}, y_{n+1})\).

\[
\begin{align*}
\frac{\partial f}{\partial x}(x_n, y_n) (x_{n+1} - x_n) + \frac{\partial f}{\partial y}(x_n, y_n) (y_{n+1} - y_n) + \cdots \to 0 \\
\frac{\partial g}{\partial x}(x_n, y_n) (x_{n+1} - x_n) + \frac{\partial g}{\partial y}(x_n, y_n) (y_{n+1} - y_n) + \cdots \to 0
\end{align*}
\]

\[
\Rightarrow \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}_{(x_n,y_n)} \cdot \begin{pmatrix} x_{n+1} - x_n \\ y_{n+1} - y_n \end{pmatrix} = \begin{pmatrix} -f(x_n, y_n) \\ -g(x_n, y_n) \end{pmatrix}
\]

\[\uparrow\]

Jacobian matrix

This equation has the form \(Ax = b\), where \(A\) is a given matrix, \(b\) is a given vector, and we must solve for the vector \(x\).