1. Find the eigenvalues and eigenvectors of the following matrices. Do this by hand, but you may check your answers using Matlab.

 a) \(\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \)
 b) \(\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \)
 c) \(\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \)
 d) \(\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \)
 e) \(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \)

section 3.7, special matrices

2. Show that the following matrices are positive definite.

 a) \(\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \)
 b) \(\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \)

section 3.8, iterative methods

3. Consider \(Ax = b \), where \(A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \), \(b = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \).

 a) In class we showed that the error in the Gauss-Seidel method is given by

 \[e_k = \left(\frac{1}{4} \right)^k \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \]

 for \(k \geq 1 \), using the eigenvalues and eigenvectors of the iteration matrix \(B_{GS} \). Following the same procedure, derive an analogous expression for the error in Jacobi’s method. Assume that the starting guess is the zero vector.

 b) Use Matlab to plot \(\rho(B_\omega) \), the spectral radius of the SOR iteration matrix, for \(0 \leq \omega \leq 2 \). Use the commands \texttt{eig, abs, max} to produce the plot. Make sure to use a fine enough mesh in the variable \(\omega \) to resolve the details of the function (1000 points on the interval \(0 \leq \omega \leq 2 \) is sufficient.) This plot is typical for the type of matrices appearing in Young’s theorem. Suppose we don’t know the exact value of the optimal SOR parameter - in using an approximate value for the iterative method, is it better to overestimate or underestimate the value of \(\omega^* \)? Explain the reason behind your answer.

4. Consider the iteration \(x_{k+1} = Bx_k + c \) and assume that \(||B|| = \alpha < 1 \). We know that the error satisfies \(||x - x_{k+1}|| \leq \alpha ||x - x_k|| \), which is an important theoretical error bound, but the right side cannot be computed in practice because although we know \(x_k \), we don’t know \(x \). Here we derive an alternative error bound that can be computed in practice.

 a) Show that \(I - B \) is invertible and that \(||(I - B)^{-1}|| \leq \frac{1}{1-\alpha} \).

 b) Show that \(||x - x_{k+1}|| \leq \frac{\alpha}{1-\alpha} ||x_{k+1} - x_k|| \).

Note: this bound can be computed because we know \(x_{k+1} \) and \(x_k \).