functions : \[f(x) = \frac{1}{x+1} - \frac{1}{x-1} , \quad x \to \infty \]

integrals : \[\hat{f}(k) = \int_{-\infty}^{\infty} f(x)e^{ikx} \, dx \quad , \quad k \to \infty \]

ODE : \[\frac{dy}{dt} = f(y) \quad , \quad t \to \infty \]

PDE : \[u_t = f(u) + \epsilon u_{xx} \quad , \quad \epsilon \to 0 \]

fluid dynamics : \[u_t + u \cdot \nabla u = -\nabla p + \frac{1}{Re} \Delta u \quad , \quad Re \to 0 \quad , \quad \infty \]

1.1, 1.2 asymptotic expansions

def
1. \(f(z) = O(g(z)) \) as \(z \to z_0 \) in \(D \) \iff \[\left| \frac{f(z)}{g(z)} \right| \text{ is bounded as } z \to z_0 \]

2. \(f(z) = o(g(z)) \) as \(z \to z_0 \) in \(D \) \iff \[\left| \frac{f(z)}{g(z)} \right| \to 0 \text{ as } z \to z_0 \]

ex
sin \(z = O(1) \) as \(z \to 0 \)

sin \(z = o(1) \)

sin \(z = O(z) \)

sin \(z \neq o(z) \)

sin \(z = z + O(z^3) \)

note : We can also consider \(z \to \infty \).

ex

\(e^{-z} \) , \(D = \{ z : |z| > 0 , \ | \arg z | < \frac{\pi}{4} \} \)

Then \(e^{-z} = o(z^{-n}) \) as \(z \to \infty \) in \(D \) for any \(n \geq 0 \).

pf

\(z = x + iy \) , \(z \in D \implies x > 0 \)

\[\left| \frac{e^{-z}}{z^{-n}} \right| = e^x (x^2 + y^2)^{n/2} \leq e^{-x} (2x^2)^{n/2} = 2^{n/2}e^{-x}x^n \to 0 \text{ as } z \to \infty \text{ in } D \quad \text{ ok} \]
def
\(f(z) \) is asymptotic to \(g(z) \) as \(z \to z_0 \) in \(D \) \iff \(\lim_{z \to z_0} \frac{f(z)}{g(z)} = 1 \)

In this case we write \(f(z) \sim g(z) \) as \(z \to z_0 \).

ex
\(\sin z \sim z \) as \(z \to 0 \)
\(\sin z \sim z - \frac{1}{3!} z^3 \) as \(z \to 0 \)
\(\sinh z \sim \frac{1}{2} e^z \) as \(z \to \infty \) , \(|\arg z| < \frac{\pi}{4} \)

def
\(f(z) \) is analytic at \(z = z_0 \) \iff \(f(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n \) for \(|z - z_0| < R \)
\(\iff f(z) = \lim_{N \to \infty} s_N(z) \) for \(|z - z_0| < R \), where \(s_N(z) = \sum_{n=0}^{N} a_n(z - z_0)^n \)
\(\iff f(z) = \text{convergent power series} \)

note : We can also consider \(z_0 = \infty \).

ex
\(\frac{1}{z^2 + 1} = \sum_{n=0}^{\infty} (-1)^n z^{2n} = 1 - z^2 + z^4 - \cdots \) in \(|z| < 1 \) , \(z_0 = 0 \)
\(= \sum_{n=0}^{\infty} \frac{(-1)^n}{z^{2n+2}} = \frac{1}{z^2} - \frac{1}{z^4} + \frac{1}{z^6} - \cdots \) in \(|z| > 1 \) , \(z_0 = \infty \)
\(\frac{1}{z^2 + 1} \sim 1 \) as \(z \to 0 \)
\(\frac{1}{z^2 + 1} \sim 1 - z^2 \) as \(z \to 0 \)
\(\frac{1}{z^2 + 1} \sim \frac{1}{z^2} \) as \(z \to \infty \)
\(\frac{1}{z^2 + 1} \sim \frac{1}{z^2} - \frac{1}{z^4} \) as \(z \to \infty \)

note
Convergent power series are not the only way to obtain asymptotic relations.
\[\text{Ei}(z) = \int_z^\infty e^{-t}t^{-1}dt : \text{not analytic at } z_0 = \infty \]

\[\text{Ei}(x) = \int_x^\infty e^{-t}t^{-1}dt \to 0 \text{ as } x \to \infty , \text{ but precisely how fast?} \]

\[\text{Ei}(x) \leq \frac{e^{-x}}{x} , \text{ pf } \ldots \]

\[\text{Ei}(x) = \int_x^\infty e^{-t}t^{-1}dt = -e^{-t}t^{-1}\bigg|_x^\infty - \int_x^\infty e^{-t}t^{-2}dt = \frac{e^{-x}}{x} - \int_x^\infty e^{-t}t^{-2}dt \]

\[= \frac{e^{-x}}{x} - \left(-e^{-t}t^{-2}\bigg|_x^\infty - 2\int_x^\infty e^{-t}t^{-3}dt \right) = \frac{e^{-x}}{x} - \frac{e^{-x}}{x^2} + 2\int_x^\infty e^{-t}t^{-3}dt \ldots \]

\[\text{Ei}(x) = s_n(x) + r_n(x) \]

\[s_n(x) = e^{-x}\left(\frac{1}{x} - \frac{1}{x^2} + \frac{2}{x^3} - \frac{3!}{x^4} + \cdots + \frac{(-1)^{n+1}(n - 1)!}{x^n} \right) \]

\[r_n(x) = (-1)^n n! \int_x^\infty e^{-t}t^{-(n+1)}dt \]

\[\text{note} \]

1. The series \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n - 1)!}{x^n} \) diverges for all \(x \neq 0 \). \(\text{pf } \ldots \)

2. Fix \(n \geq 0 \). Then \(|r_n(x)| \leq n! \frac{e^{-x}}{x^{n+1}} \). It follows that \(\frac{\text{Ei}(x)}{s_n(x)} = 1 + \frac{r_n(x)}{s_n(x)} \to 1 \) as \(x \to \infty \), so \(\text{Ei}(x) \sim s_n(x) \) as \(x \to \infty \).

\[\text{note : Suppose we want to approximate } \text{Ei}(x) \text{ by } s_n(x) \text{ for a given value of } x. \]

The best choice of \(n \) is the one that minimizes \(r_n(x) \).

\[\text{hw : } |r_n(x)| \sim n! \frac{e^{-x}}{x^{n+1}} \text{ as } x \to \infty \]

\[\Rightarrow \text{the error in } s_n(x) \sim \text{the 1st neglected term in the series as } x \to \infty \]

\[\Rightarrow \left| \frac{r_n(x)}{r_{n-1}(x)} \right| \sim \frac{n! \frac{e^{-x}}{x^{n+1}}}{(n - 1)! \frac{e^{-x}}{x^n}} = \frac{n}{x} \leq 1 \iff n \leq x \]

\[\Rightarrow \text{the best choice is } n = [x] : \text{the largest integer } \leq x \]
\textbf{ex} : \(\text{Ei}(5) = 0.001148 \)

\begin{center}
\begin{tabular}{|c|c|}
\hline
\(n \) & \(s_n(5) \) \\
\hline
1 & 0.001348 \\
2 & 0.001078 \\
3 & 0.001186 \\
4 & 0.001121 \\
5 & 0.001173 \leftarrow \\
6 & 0.001121 \\
7 & 0.001183 \\
14 & -0.003846 \\
19 & 1.775902 \\
\hline
\end{tabular}
\end{center}

\textbf{note} : Given \(x \), the error cannot be made arbitrarily small. As \(x \) increases,
1. the optimal \(n \) increases and the minimum error decreases,
2. the error curve becomes flatter near the minimum, so a small error is obtained even for \(n \ll [x] \), e.g. even \(n = 1 \) may be adequate in some applications.

\textbf{def} : \(\{ \phi_n(z) : n = 0, 1, 2, \ldots \} \) is an \textbf{asymptotic sequence} as \(z \to z_0 \)
\(\Leftrightarrow \phi_{n+1}(z) = o(\phi_n(z)) \) as \(z \to z_0 \)

\textbf{ex}
\(\phi_n(z) = (z - z_0)^n \) as \(z \to z_0 \)
\(\phi_n(z) = e^{-nz} \) as \(z \to \infty \)
\(\phi_n(z) = 1, z \log z, z, z^2 \log z, z^2, z^3 \log z, z^3, \ldots \) as \(z \to 0 \)

\textbf{def} : \(f(z) \sim \sum_{n=0}^{\infty} a_n \phi_n(z) \) as \(z \to z_0 \) : \textbf{asymptotic expansion}
\(\Leftrightarrow f(z) = \sum_{n=0}^{N} a_n \phi_n(z) + o(\phi_N(z)) \) as \(z \to z_0 \) for all \(N \geq 0 \)

\textbf{ex 1} : If \(f(z) \) is analytic at \(z = z_0 \), then \(f(z) \sim \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(z_0)(z - z_0)^n \) as \(z \to z_0 \).

Hence a convergent power series is an example of an asymptotic expansion.

\textbf{ex 2} : \(\text{Ei}(x) = \int_{x}^{\infty} e^{-t}t^{-1}dt \sim e^{-x} \sum_{n=1}^{\infty} (-1)^{(n+1)} \frac{(n-1)!}{x^n} \) as \(x \to \infty \)

This is a \textbf{divergent} series which nonetheless is an asymptotic expansion.

\textbf{pf} : \(\phi_n(x) = e^{-x}x^{-n} \), \ldots