In the problems below, find the first two terms in the asymptotic expansion of \(w(z) \) as \(z \to \infty \). These are 2nd order equations, so there are two independent solutions; write them in the form \(w(z) \sim e^{\lambda z} z^\sigma (\alpha_0 + \frac{\alpha_1}{z} + \cdots) \) as \(z \to \infty \); you may take \(\alpha_0 = 1 \).

1. page 110 / 1 (i), (ii) : use the expansion \(w(z) \sim e^{\lambda z} z^\sigma (\alpha_0 + \frac{\alpha_1}{z} + \cdots) \) as \(z \to \infty \)

Hint for 1(i): note that (6.13) does not hold. Use the transformation following (6.20) in the form \(z = t^2, w(z) = t^{1/2} u(t) \) to derive an equation for \(u(t) \) for which (6.13) does hold and then apply the form (6.14).

Hint 1 for 1(ii): eliminate the first derivative term and apply (6.14).

Hint 2 for 1(ii): show that one of the two asymptotic solutions is exact

2. page 110 / 2 (i), (ii) : use the expansion \(w(z) \sim \exp(\phi_0(z) + \phi_1(z) + \cdots) \) as \(z \to \infty \)