Math 675, Homework 6-Part 2

(Due Monday, November 23, 2015, in class, or by 3pm in the box outside EH3086)

Problems with two stars (**) are not assigned.

48. (A Dirichlet series)

Let $\chi : (\mathbb{Z}/p\mathbb{Z})^* \to \mathbb{C}^*$ be any Dirichlet character (mod m). (The answer to convergence regions below may depend on the particular character, please specify the dependence.)

(a) Show that
$$F(s, \chi) := \sum_{n=1}^{\infty} d(n)^2 \chi(n)n^{-s} = \frac{L(s, \chi)^4}{L(2s, \chi^2)}.$$

(b) Determine σ_a for $F(s, \chi)$.

(c) Determine σ_c for $F(s, \chi)$. (If you cannot determine it completely, find an upper bound.)

49. Alternate proof of $L(1, \chi) \neq 0$ for real characters (Mertens 1895)

Let $r_\chi(n) = \sum_{d|n} \chi(d)$.

(a) Show that if χ is non-principal character (mod m) then there is a positive constant $C_1(\chi)$ such that, for $2 \leq x < \infty$,
$$|\sum_{n>x} \frac{\chi(n)}{\sqrt{n}}| \leq C_1(\chi) \frac{1}{\sqrt{x}}.$$

(b) Show that if χ is a non-principal character (mod m) then, for $2 \leq x < \infty$,
$$\sum_{n \leq x} r_\chi(n) \frac{1}{\sqrt{n}} = 2\sqrt{x}L(1, \chi) + O_\chi(1)$$

(The implied constant in the O-symbol depends on χ.)

(c) Suppose that χ is a (nontrivial) real character. Show that $r_\chi(n) \geq 0$ for all $n \geq 1$ and that $r_\chi(n^2) \geq 1$ for all n with $(n, m) = 1$. Deduce that
$$\sum_{n \leq x} r_\chi(n) \frac{1}{\sqrt{n}} \geq C_2(\chi) \log x,$$

for a positive constant $C_2(\chi)$. Choosing x sufficiently large, conclude using (b) that $L(1, \chi) > 0$.

(d)(**) Can one determine an explicit lower bound for $L(1, \chi)$ (as a function of m) where χ is a real character? [This requires determining the constants in (a)-(c).]
50. (*Goblins and Gaussians Revisited*)

Consider the complex Gaussian \(f_\alpha(t) = e^{-\pi \alpha t^2} \), allowing \(t \in \mathbb{C} \).

(a) Show that

\[
\int_0^\infty e^{-\pi t^2} dt = \lim_{Y \to \infty} \sqrt{i} \int_0^Y e^{\pi it^2} dt,
\]

by using a limit of appropriate (closed) contour integrals in the complex \(t \)-plane, and bounding integral on parts of the contour. (Also answer: which branch of the square root of \(i \) must be chosen here, in terms of the sign of its imaginary part?)

(b) Explain why the method fails to establish that

\[
\int_0^\infty e^{-\pi t^2} dt = (?) \lim_{Y \to \infty} \int_0^Y e^{\pi it^2} dt,
\]

Which contour would you use in this case.

51. (*A Throwback*)

Prove or disprove the following theorems.

(a) **Theorem A.** Suppose \(f(x) \) and \(g(x) \) are continuous on \([0, \infty)\), \(g(x) > 0 \) if \(x > a \), \(f(x) = O(g(x)) \) as \(x \to \infty \). Then, for all sufficiently large \(x \),

\[
\int_a^x f(t) dt = O\left(\int_a^x g(t) dt \right).
\]

(b) **Theorem B.** Suppose for \(m \geq 1 \), \(f_m(x) \) and \(g_m(x) \) are continuous on \([0, \infty)\), \(g_m(x) > 0 \) if \(x > a \), \(f_m(x) = O(g_m(x)) \) as \(x \to \infty \). Then, for all sufficiently large \(x \),

\[
\sum_{m=1}^\infty f_m(x) = O\left(\sum_{m=1}^\infty g_m(x) \right).
\]

52. (*Imprimitive Gauss Sums*)

For fixed \(m \) take the additive character \(\psi(k) = e(k/m) = e^{2\pi ik/m} \). Define for a Dirichlet character \(\chi \) (mod \(m \)) the Gaussian sum

\[
G(\chi) := G(\chi, \psi) = \sum_{k=1}^m \chi(k)\psi(k) = \sum_{k=1}^m \chi(k)e^{2\pi ik/m}.
\]

(a) Show that if \(\chi \) is a primitive character then

\[
|G(\chi)| = \sqrt{m}.
\]

(b) Show that if \(\chi \) is a nontrivial character then

\[
|G(\chi)| \leq \sqrt{m}.
\]

(c) If \(m = p^j \) is an odd prime power, with \(j \geq 2 \), and \(\chi \) is imprimitive, with associated primitive character \(\chi_1 \) (mod \(p \)), find a formula relating \(G(\chi, \psi) \) to \(G(\chi_1, \psi_1) \) where \(\psi_1(k) = e^{2\pi ik/p} \).