1. [Fractional Ideals and Different] Let \(L/K \) be number fields with rings of integers \(O_K, O_L \). \(L \) can be considered both as an \(O_K \)-module and as an \(O_L \)-module. Let \(A \) be an additive subgroup of \(L \). Define

\[
A^{-1} := \{ \alpha \in L : \alpha A \subset O_L \} \\
A^* := \{ \alpha \in L : Tr_{L/K}(\alpha A) \subset O_K \}.
\]

Define the different \(\delta(A) \) (also denoted \(\text{diff}(A) \)) in terms of these definitions by

\[
\delta(A) := (A^*)^{-1},
\]

it will be an \(O_L \)-module, see below, and its definition is made with respect to the \(O_K \)-module structure on \(O_L \) given by the trace map. The different is an invariant which is related to the discriminant, see Problem 9.

Let \(A, B \) denote additive subgroups of \(L \) and \(I \) a fractional \(O_L \) ideal in \(L \) (called hereafter a fractional \(L \)-ideal.)

(a) Show that \(A^{-1} \) is an \(O_L \)-submodule of \(L \), and \(A^* \) is an \(O_K \)-submodule of \(L \) (i.e. \(O_L A^{-1} \subset A^{-1} \) and \(O_K A^* \subset A^* \).) Then show that

\[
A \subset B \Rightarrow B^{-1} \subset A^{-1} \text{ and } B^* \subset A^*.
\]

(b) Show that \(A \) is a fractional ideal in \(L \) if and only if

\[
O_L A \subset A \text{ and } A^{-1} \neq \{0\}.
\]

(c) For a fractional ideal \(I \) of \(L \) and additive subgroups \(A, B \) of \(L \) show that

\[
I = (I^{-1})^{-1}
\]

\(I^* \) is an \(O_L \) – submodule of \(L \)

\(I^* \) is a fractional ideal.

\[
II^* \subset (O_L)^*
\]

\[
I^*(I^*)^* = (O_L)^*
\]

\[
(I^*)^* = I.
\]
(d) For the different show that:

\[\delta(A) \subset (A^{-1})^{-1} \]
\[\delta(I) \subset I \]
\[\delta(I) \text{ is a fractional ideal.} \]

\[A \subset I \Rightarrow \delta(A) \text{ is a fractional ideal.} \]
\[I^* \subset (\delta(I))^{-1} \]
\[\delta(I) = I\delta(O_L) \]

2. [Dual Basis for Trace] Let \(L/K \) be number fields with \([L : K] = n\). Let \(\{\alpha_1, ..., \alpha_n\} \) be a basis for \(L \) over \(K \) as a vector space.

(a) Prove there exist \(\beta_1, ..., \beta_n \in L \) such that
\[\text{Tr}_{L/K}(\alpha_i \beta_j) = 1 \text{ if } i = j, \ 0 \text{ otherwise.} \]
(Hint: recall that \(d(\alpha_1, ..., \alpha_n) = \det[\text{Tr}_{L/K}(\alpha_i \alpha_j)] \neq 0 \).) Show that \(\{\beta_1, ..., \beta_n\} \) is another basis of \(L \) over \(K \). (It is called the dual basis for the trace bilinear form.)

(b) Let \(A = O_K\alpha_1 \oplus \cdots \oplus O_K\alpha_n \subset L \) be the free \(O_K \)-module generated by the \(\alpha_i \).
Show that
\[A^* = B \]
where \(B = O_K\beta_1 \oplus \cdots \oplus O_K\beta_n \subset L \). (Hint: Given \(\gamma \in A^* \), obtain \(\beta \in B \) such that \(\text{Tr}_{L/K}((\gamma - \beta)A) = 0 \), and show this implies \(\gamma = \beta \).)

3. [Power Basis and Different] Let \(L/K \) number fields, with \(L = K(\alpha) \), noting that \(L = K[\alpha] \) as well. Let \(f(x) \) be the monic irreducible polynomial \(\alpha \) satisfies over \(K \), and write \(f(x) = (x - \alpha)g(x) \). Then write
\[g(x) = \gamma_{n-1}x^{n-1} + \gamma_{n-1}x^{n-2} + \cdots + \gamma_0, \]
for some \(\gamma_i \in L \). This problem is to show that the dual basis to the power basis
\[A = O_K[1, \alpha, \alpha^2, \cdots, \alpha^{n-1}] \]
is
\[B = O_K[\frac{\gamma_0}{f'(\alpha)}, \cdots, \frac{\gamma_{n-1}}{f'(\alpha)}] \]

(a) Let \(\sigma_1, \cdots, \sigma_n \) be embeddings of \(L \) in \(\mathbb{C} \) fixing \(K \) pointwise. The the \(\sigma_i(\alpha) \) are the roots of \(f(x) \). Show that
\[f(x) = (x - \alpha_i)g_i(x) \]
with $g_i(x)$ being the polynomial obtained from $g(x)$ by applying σ_i to its coefficients, and $\alpha_i = \sigma_i(\alpha)$.

(b) Show that $g_i(\alpha_j) = f'(\alpha_j)$ if $i = j$ and 0 otherwise. [Hint: Show $f'(\alpha) = \prod(\alpha - \beta)$ where β runs over all roots unequal to α.]

(c) Let M be the Vandermonde matrix $M = [(\alpha_j)^{i-1}]_{ij}$. Let N be the matrix $N = [\sigma_i(\gamma_j^{-1}f'(\alpha))]_{ij}$. Show that $NM = I$, and conclude $N = M^{-1}$.

(d) Show that if $\alpha \in O_L$ then the O_K-module

$$B = O_K[\gamma_0, \gamma_1, \ldots, \gamma_{n-1}]$$

is the ring $B = O_K[\alpha]$. (Hint: multiply out $(x - \alpha)g(x)$.)

(e) Prove that if $\alpha \in O_L$ then

$$(O_K[\alpha])^* = (f'(\alpha))^{-1}O_K[\alpha].$$

(f) Prove that if $\alpha \in O_L$ then the different

$$\delta(O_K[\alpha]) = f'(\alpha)O_L.$$

(g) Prove that if $\alpha \in O_L$ then

$$f'(\alpha) \in \delta(O_L).$$

4. [Localization and PID’s] Let R be a (commutative) integral domain with unit, that is Noetherian, and contains a finite number of nonzero prime ideals.

(a) Show that if R is a Dedekind domain and has only one prime ideal, then it is a PID, i.e. all prime ideals are principal.

(b) Extend your proof in (a) to show R is a PID if is a semi-local Dedekind domain, i.e. it has a finite number of maximal ideals.

(c) (*) Is the PID conclusion always true without the Dedekind domain assumption? What about being a UFD?
5. [General Basis of O_K.] Let $K = \mathbb{Q}(\alpha)$ where α is an algebraic integer. We showed that the ring of integers can be written

$$O_K = \mathbb{Z}[1, \frac{f_1(\alpha)}{d_1}, \frac{f_2(\alpha)}{d_2}, \ldots, \frac{f_{n-1}(\alpha)}{d_{n-1}}]$$

with $d_i | d_{i+1}$, and $f_i(x) \in \mathbb{Z}[x]$ is a monic polynomial of degree i.

(a) Show that $d(\mathbb{Z}[\alpha]) = (d_1d_2 \cdots d_{n-1})^2 \Delta_K$.
[Hint: First show that $d(1, \alpha, \alpha^2, \ldots, \alpha^{n-1}) = d[1, f_1(\alpha), \ldots, f_{n-1}(\alpha)]$.]

(b) Show that $[O_K : \mathbb{Z}[\alpha]] = d_1d_2 \cdots d_{n-1}$.

(c) Show that $d_id_j | d_{i+j}$ if $i + j \leq n - 1$.
[Hint: Consider $\frac{f_i(\alpha)f_j(\alpha)}{d_id_j}$.]

(d) Show that for $1 \leq i \leq n - 1$, $(d_1)^i | d_i$. Conclude that

$$(d_1)^{n(n-1)} | d(\mathbb{Z}[\alpha]).$$

6. [Cyclotomic Field Discriminant: Sharpening of Lemma 10.1.1]. Find the discriminant of the cyclotomic field $\mathbb{Q}(\zeta_m)$.

(a) Show that the discriminant of the cyclotomic field for $m = p^k$ a prime power is

$$\Delta_{p^k} := \pm p^{\varphi(n-1)(n-1)}.$$

(b) Determine for which p^n the minus sign occurs in (a).

(c) Using (a), (b), prove that the discriminant of $\mathbb{Q}(\zeta_m)$ for general n is

$$\Delta_m := (-1)^{\varphi(m)/2} \frac{m^{\varphi(m)}}{\prod_{p|m} p^{\varphi(m)/(p-1)}}.$$

7. [Quadratic Fields in Cyclotomic Fields] This exercise relates quadratic fields and cyclotomic fields.

(a) Show that every cyclotomic field $L = \mathbb{Q}^m(\zeta_n)$ for $n \geq 3$ contains at least one quadratic subfield $K = \mathbb{Q}(\sqrt{D})$.

(b) For each odd prime p show that this quadratic field is unique, and that it is $K = \mathbb{Q}(\sqrt{\pm p})$ so that $\pm p \equiv 1 \pmod{4}$.

[Hint: Consider the discriminant of $\mathbb{Q}(\zeta_p)$ computed in problem 6. Note that the discriminant of a power basis is a square of something.]

(c) Show that $\sqrt{2}$ is in $\mathbb{Q}(\zeta_8)$.

(d) Show that every quadratic field $K = \mathbb{Q}(\sqrt{D})$ is a subfield of some cyclotomic field. Identify the smallest m that you can, given a factorization of D. (It is $m = \Delta_K$).

8. [Ideal Class Groups] (a) Use Minkowski’s bounds on the norm of elements in ideal classes to prove that $\mathbb{Q}(\sqrt{-3})$ and $\mathbb{Q}(\sqrt{5})$ have trivial ideal class group (class number 1).

(b) Show $\mathbb{Q}(\sqrt{21})$ has class number 1. Do the same for $\mathbb{Q}(\sqrt{17})$. [Hint: Analyze factorization/principality of prime ideals of small norm.]

9. [Different and Ramification] Let L/K be number fields and let consider the different $\delta(O_L)$ defined with respect to O_K; it is an integral O_L-ideal. Let P be a prime ideal in O_K, and Q a prime ideal in O_L lying over P. This exercise shows that if Q is ramified with index $e = e(Q/P) \geq 2$, then $Q^{e-1} \mid \delta(O_L)$. That is, the different detects exactly which of the primes lying over P ramify.

(a) Define an O_L-ideal I by $PO_L = Q^{e-1}I$, show that P contains the ideal $Tr_{L/K}(I) = \{Tr_{L/K}(\alpha) : \alpha \in I\}$. [Hint: See the proof that a ramified prime divides discriminant.]

(b) Let P^{-1} be the inverse of P as an O_K-fractional ideal. Show that $P^{-1}O_L = (pPO_L)^{-1}$ as O_L-fractional ideals.

(c) Show that $(PO_L)^{-1}I \subset (O_L)^*$.

(d) Show that $Q^{e-1} \mid \delta(O_L) := (O_L^*)^{-1}$.

(e) Show that for any $\alpha \in O_L$ that

$$Q^{e-1}|f'(\alpha)O_L,$$

where $f(x)$ is the monic irreducible polynomial for α over O_K.

10. [Absolute Different and Discriminant]

Consider a number field L/\mathbb{Q} with discriminant Δ_L. The dual module to O_L is
\(O_L^* = \{ \alpha \in L : \text{Tr}_{L/Q}(\alpha O_L) \subset \mathbb{Z} \} \). The absolute different over \(\mathbb{Z} \) is
\[\delta(O_L) := (O_L^*)^{-1}. \]

It is an \(O_L \)-ideal.

(a) Let \([\alpha_1, ..., \alpha_n]\) be an integral basis of \(O_L \) and let \([\beta_1, ..., \beta_n]\) be the dual basis with respect to \(\text{Tr}_{L/Q} \). Then \([\beta_1, ..., \beta_n]\) is a basis for \(O_L^* \) over \(\mathbb{Z} \). (See Problem 2.) Show that the discriminants
\[d(\alpha_1, ..., \alpha_n)d(\beta_1, ..., \beta_n) = 1. \]

(b) Show that \(|((O_L)^* : O_L)| = |\Delta_L|\), the absolute discriminant of \(O_L \). (Hint: Write the \(\alpha_i \) in terms of the \(\beta_i \).)

(c) Prove that \([O_L : \delta(O_L)] = |\Delta_L|\). (See Problem 1.)