1. **Orders of number fields** Let the monic polynomial \(f(x) = x^n = a_n x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x] \) be irreducible, and set \(K = \mathbb{Q}(\theta) \) where \(\theta \) is a root, so \([K : \mathbb{Q}] = n\). An order is a subring with unit \(R \) which contains 1, and is of full rank \(n \) as a \(\mathbb{Z} \)-module. (For example \(R = \mathbb{Z}[1, \theta, \ldots, \theta^{n-1}] \).)

 The ring of integers \(O_K \) is (a) maximal order, i.e. it is integrally closed in \(K \), and all other orders are contained in \(O_K \) and are non-maximal. For a non-maximal order \([O_K : R] = f > 1\).

 (i) Prove the a non-maximal order is not a Dedekind domain. [Read the proof in Lang, Chap. 1, Theorem 2, and find out where the proof of Dedekind domain fails for an order. Which axioms of a Dedekind domain hold, and which fail?]

 (ii) Define (integral) ideals and fractional ideals in the usual way for \(R \) They are \(J = (1/\alpha)A \) for some element \(\alpha \) of \(K \) and some integral ideal \(A \) of \(R \). For an integral \(R \)-ideal define the norm \(N.J = \#(R/A)|\frac{1}{N_{K/\mathbb{Q}}}(\alpha)| \). Let \(I_m \) denote the set of fractional ideals that are quotients of integral ideals of norm relatively prime to the integer \(m \), and let \(P_m \) denote the set of principal fractional ideals contained in \(I_m \). Show that \(I_m, P_m \) are abelian groups, so that the group \(C_m = I_m / P_m \) is defined. (This is a ring class group.)

 (iii) Define a homomorphism \(j_m : I_m \rightarrow I_1 \) taking \(P_m \) to \(P_1 \). Show that this induces a well-defined homomorphism \(j_m : C_m \rightarrow C_1 \) where \(C_1 \) is the ideal class group. (What is the norm of \(AO_K \) in \(I_1 ? \))

 (iv) Show that \(j_m \) is surjective. (May assume as known that there are infinitely many prime ideals in each class of \(I_m \).)

 Remark. Neukirch, Chap. 1, Sect. 13 (read this!), views the property of being integrally closed as “smoothness” in algebraic geometry terms. Thus non-maximal orders are a kind of “singular’ object.

2. **Integral Closure of Non-maximal orders** Let \(L/K \) be a number field and let \(R \) be a (possibly non-maximal) order \(R \) in the number field \(K \).

 (a) Prove that the integral closure \(R' \) of \(R \) in \(L \) is a Dedekind domain. [This result is in Neukirch, Chap. 1, Prop. 12.8.]

 (b) What happens in the case \(L = K \)? What can you say about the integral closure of \(R \).

3. **Irreducible Trinomial** Let \(f(x) = x^n - x - 1 \).

 (i) Show that \(f(x) \) has exactly one real root \(\theta_n > 1 \).

 (ii)(*) Show that the discriminant of the polynomial \(f(x) \) is

 \[
 D_n = (-1)^{(n-1)(n-2)/2}(n^n + (-1)^n(n-1)^{n-1}).
 \]
(iii) (*) Show that \(f(x) \) is irreducible over \(\mathbb{Q} \). (For this see E. S. Selmer, *On the irreducibility of certain trinomials*, Math. Scand. 4 (1956), 287–302. Download and read this paper, the relevant section, for an amazing proof.)

(iv) Set \(K = \mathbb{Q}(\theta_n) \), which is a number field of degree \(n \) for all \(n \geq 3 \) (by (iii)). Prove that \(K \) is not a normal extension of \(\mathbb{Q} \) for all \(n \geq 3 \).

(v) (**)[May be unsolved] For which \(n \) is \(\mathbb{Z}[1, \theta, \ldots, \theta^{n-1}] \) the maximal order \(O_K \). List some \(n \) for which this is the case. (A computer package like PARI or SAGE will be useful here.)

(vi) (*) Show the normal closure of \(K \) has Galois group \(S_n \).

3. In this problem, assume as known the Chebotarev (or Cebotarev) density theorem.

Let \(K = \mathbb{Q}(\theta) \) be a number field with \([K : \mathbb{Q}] = n \). Let \(d(K/\mathbb{Q}) \) be the density of the set of rational primes \(p \) that have at least one degree one prime ideal of \(K \) lying over \(L \). That is,

\[
d(K) = \lim_{x \to \infty} \frac{1}{\pi(x)} \# \{ p \leq x : \text{there is a prime ideal in } K \text{ of norm } p' \}.
\]

(It is a deep fact that the limit exists.) Equivalently if \(K = \mathbb{Q}(\theta) \), where \(\theta \) satisfies an irreducible monic degree \(f \) polynomial \(f(x) = x^n = a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x] \). then there is a degree one prime ideal over \((p) \) in \(K \) if and only if \(f(x) \) has a linear factor \(\text{(mod } p) \).

(i) Prove that

\[
d(K) \geq \frac{1}{n}.
\]

(ii) Prove that strict inequality holds in (i) if the normal closure of \(K \) is a number field with Galois group \(S_n \). [*Hint. One will need to count the number of permutations containing at least one 1-cycle.*]

(ii) Prove that equality holds in (i) if and only if \(K/\mathbb{Q} \) is a normal extension of \(\mathbb{Q} \). [*Neukirch, Chap. 7, Corollary 13.6.*]

4. Consider the pure cubic field \(K = \mathbb{Q}(10^{1/3}) \).

(a) Determine which primes ramify in this field.

(b) Determine which primes ramify tamely, and which (if any) ramify wildly.

(c) Determine the primes \(p < 50 \) which have a degree one prime factor in \(K \). Which of these split completely? [*Hint: You might use the factorizations of \(f(X) = x^3 - 10(\text{mod } p) \). Determine \(Disc(f) \). A computer will be necessary.*]

(d)(*) Find the fundamental unit of this field. [Again, use a computer package.]