Math 776, Homework 4

(**) indicates it is open-ended and/or a hard problem.

1. (Local Kronecker-Weber Theorem- 2-adic case)
 This problem finishes the proof of local Kronecker-Weber theorem for the case of cyclic 2-extensions $[K : \mathbb{Q}_2] = 2^k$, for some $k \geq 1$.
 (a) For $m \geq 1$ show there is a unique unramified extension K_u/\mathbb{Q}_2 with Galois group $\mathbb{Z}/2^m\mathbb{Z}$. Show there is a totally ramified extension K_r with Galois group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^m\mathbb{Z}$, namely $\mathbb{Q}_2(\zeta_{2^{m+2}})$.
 Conclude there is an abelian extension K of \mathbb{Q}_2 having Galois group $(\mathbb{Z}/2\mathbb{Z})^3$.
 (b) Suppose there is a cyclic extension K with Galois group $\mathbb{Z}/2^m\mathbb{Z}$ that is not contained in K_r, K_u and derive a contradiction. Show first that the existence of such K implies there exists an extension of \mathbb{Q}_2 with Galois group one of $(\mathbb{Z}/2\mathbb{Z})^4$ or $(\mathbb{Z}/4\mathbb{Z})^3$.
 (c) Use Kummer theory on these two types of Kummer extensions to rule out either of these Galois groups. The case $(\mathbb{Z}/2\mathbb{Z})^4$ corresponds to four independent quadratic extensions of \mathbb{Q}_2. Prove there are at most 3 independent quadratic extensions.
 (d) To rule out a field N/\mathbb{Q}_2 with Galois group $(\mathbb{Z}/4\mathbb{Z})^3$ we must adjoin a fourth root of unity $\sqrt{-1}$, and analyze Kummer extensions. Show that necessarily $\sqrt{-1} \in N$ in this case, which simplifies things. (You may also need to know or show that $A^2 + B^2 = -1$ has no solutions in \mathbb{Q}_2.)

2. (Infinite Galois Extensions-1) Let L/k be a (possibly) infinite Galois extension with Galois group $G = \text{Gal}(L/k)$ with the Krull topology, i.e. open subgroups are $\text{Gal}(L/E)$ where E is a finite Galois extension.
 (a) Prove basic open sets are open and closed. Deduce that G is totally disconnected. Prove G is compact.
 (b) Prove that each extension field K/k inside L has K the fixed field of a closed subgroup G' of G, and conversely.
 (c) Prove that each finite extension field K/k with $K \subset L$ is the fixed field of an open subgroup of G, and conversely. [Thus all open subgroups are closed, and are of finite index in G.]
 (iv) Prove that K/k is a normal extension if and only if $H = \text{Gal}(L/K)'$ is a normal closed subgroup of G.
 (v) Let H be a finite index subgroup of $\text{Gal}(L/k)$. Must H be an open subgroup?

3. (Infinite Galois Extensions-2) Let L/\mathbb{Q} be the maximal abelian extension. Pick $\alpha \in G$, and suppose it is of infinite order. What can you say about:
(a) The closure \bar{H} of $H = \langle \alpha^n : n \in \mathbb{Z} \rangle$ in G. Is there any simple relation between H and \bar{H}?

(b) The normal extension L^H corresponding to \bar{H}.

[How does the Galois group being abelian simplify things?]

4. (Infinite Galois Extensions-3)

For each prime p, let $\mathbb{Q}[p]$ be the maximal extension of \mathbb{Q} that embeds into \mathbb{Q}_p. This is the compositum of all finite extensions K/\mathbb{Q} with $K = \mathbb{Q}(\theta)$ generated by an algebraic integer θ whose minimal polynomial splits into linear factors (mod p).

(a) Show that $\mathbb{Q}[p]$ is an infinite extension of \mathbb{Q} that is a Galois extension.

(b) (***) Say whatever you can about the structure of $Gal(\mathbb{Q}[p]/\mathbb{Q})$.

(c) (***) Say whatever you can about the structure of $Gal(\mathbb{Q}/\mathbb{Q}[p])$.

[Questions to ask: Say something about the structure of the Galois group as a profinite group. Or say something about how much of the maximal abelian extension of \mathbb{Q}_p is inside $\mathbb{Q}[p]$, etc. Or to identify interesting subfields, e.g. the maximal tamely ramified subextension of $\mathbb{Q}[p]$. What if one asks about ramification only over a single prime ℓ with $\ell \neq p$?]

[Note that, as p varies, every Galois number field appears in infinitely many $\mathbb{Q}[p]$, by the Chebotarev density theorem, so each $\mathbb{Q}[p]$ must be quite large in some (unspecified) sense.]

5. (Abelian extensions having no splitting into unramified and totally ramified parts)

This problem is to show that there exists a subfield L of $E = \mathbb{Q}_5(\zeta_5, \zeta_{5^4-1})$ that cannot be written as a compositum of an unramified extension and a totally ramified extension of the 5-adic field \mathbb{Q}_5.

(a) Show that E is the compositum of $\mathbb{Q}_5(\zeta_5)$, which is cyclic totally ramified of degree 4, and $\mathbb{Q}_5(\zeta_{624})$, which is cyclic unramified of degree 4, since $624 = 5^4 - 1$. Conclude that $Gal(E/\mathbb{Q}_5) = \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ is abelian. [Query: Are the two fields in the compositum linearly disjoint?]

(b) Let $Gal(E/\mathbb{Q}_5) = \langle \sigma \rangle \times \langle \tau \rangle$ where $\mathbb{Q}_5(\zeta_5)$ is fixed field of $\langle \sigma \rangle: \zeta_5 \mapsto (\zeta_5), \zeta_{624} \mapsto (\zeta_{624})^5$ and $\mathbb{Q}(\zeta_{624})$ is the fixed field of $\langle \tau \rangle: \zeta_5 \mapsto (\zeta_5)^2, \zeta_{624} \mapsto \zeta_{624}$. Now let L be the fixed field of $\langle \sigma^2 \tau \rangle$. Since this element has order 4 in G, conclude L/\mathbb{Q}_5 must be a cyclic extension of degree 4, and $Gal(L/\mathbb{Q}_5) = \mathbb{Z}/4\mathbb{Z}$.

(c) Show that maximal unramified extension of L is $L_u := L \cap \mathbb{Q}(\zeta_{624})$, and that L_u is of degree 2.

(d) Conclude that there is no totally ramified $L_r \subset L$ of degree 2, with $L = L_rL_u$. If there were, then L would be the compositum of two quadratic extensions of \mathbb{Q}_5, so have $Gal(L/\mathbb{Q}_5) = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, which is a contradiction.