PUBLICATIONS OF JEFFREY C. LAGARIAS

A. Books

B. Book Chapters

C. Papers in Peer-Reviewed Journals

22. J. C. Lagarias, A. M. Odlyzko and J. B. Shearer, On the density of sets of integers the sum of no two of which is a square II. General sequences, J. Combinatorial Theory, Series A, 34 (1983), 123–139.

27. H. Cohn and J. C. Lagarias, Is there a density for the set of primes \(p \) such that the class number of \(\mathbb{Q}(\sqrt{-p}) \) is divisible by 16?, in: *Topics in Classical Number Theory*, (G. Halasz, Ed.), Colloquium Societatum Janos Bolyai No. 34 (1984), 257–279.

90. J. C. Lagarias and Yang Wang, Self-affine tiles in \(\mathbb{R}^n \), Advances in Mathematics 121 (1996), 21–49.

156. J. C. Lagarias and K. Soundararajan, Benford’s law for the \(3x + 1 \) function, J. London Math. Soc. **74** (2006), 289–303.

160. J. C. Lagarias, The Schrödinger operator with Morse potential on the right half line, Communications in Number Theory and Physics 3 (2009), No. 2, 323–361.

177. J. C. Lagarias and S. Neshveyev, Ergodicity of the action of \(K^* \) on \(\mathbb{A}_K \), IMRN, 2014, no. 18, 5165–5186. DOI 10.1093/imrn/rnt114

182. J. P. Bell and J. C. Lagarias, 3\(x \) + 1 orbit generating functions almost always have natural boundaries, Acta Arithmetica 170 (2015), no. 2, 101–120.

185. J. C. Lagarias, A family of measures on symmetric groups and the field with one element, Journal of Number Theory, 161 (2016), 311–342. DOI: 10.1016/j.jnt.2015.09.003

B*. Preprints and papers in preparation

C. Conference Papers

C11. J. Hästad, B. Helfrich, J. C. Lagarias and C. P. Schnorr Polynomial time algorithms for finding integer relations among real numbers, STACS ’86, Lecture Notes in Computer Science, No. 210, Springer-Verlag, New York (1986), 105–118. (see [44])

D. Expository and Survey Papers

E. Miscellaneous papers and book reviews

F. Problems and Solutions

1. J. C. Lagarias, Solution to 6035, A subseries of $\sum \mu(n) \log n/n$, American Math. Monthly 84 (1977), 225.

19. J. C. Lagarias and T. J. Richardson, Problem 10591 (10598), Solid angles of a tetrahedron, American Math. Monthly 104 (1997), 457 [This problem was mis-numbered, stated as 10591, but solved as Problem 10598, 106 (1999), 268–270.]

G. Patents

